首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   0篇
工业技术   119篇
  2024年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   2篇
  1991年   6篇
  1990年   5篇
  1989年   1篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1974年   1篇
排序方式: 共有119条查询结果,搜索用时 31 毫秒
1.
Genetic algorithms in engineering electromagnetics   总被引:10,自引:0,他引:10  
This paper presents a tutorial and overview of genetic algorithms for electromagnetic optimization. Genetic-algorithm (GA) optimizers are robust, stochastic search methods modeled on the concepts of natural selection and evolution. The relationship between traditional optimization techniques and the GA is discussed. Step-by-step implementation aspects of the GA are detailed, through an example with the objective of providing useful guidelines for the potential user. Extensive use is made of sidebars and graphical presentation to facilitate understanding. The tutorial is followed by a discussion of several electromagnetic applications in which the GA has proven useful. The applications discussed include the design of lightweight, broadband microwave absorbers, the reduction of array sidelobes in thinned arrays, the design of shaped-beam antenna arrays, the extraction of natural resonance modes of radar targets from backscattered response data, and the design of broadband patch antennas. Genetic-algorithm optimization is shown to be suitable for optimizing a broad class of problems of interest to the electromagnetic community. A comprehensive list of key references, organized by application category, is also provided  相似文献   
2.
There are many stringent demands imposed on the applications of spaceborne antenna systems. One of the most challenging demands is the generation of multiple beams with the ability to scan a very large number of beamwidths. Since the parabolic reflectors have limitations in this application, a 35-m spherical reflector antenna is proposed for a geostationary radar antenna at Ka-band (35.6 GHz) due to its inherent capability of scanning the beams to very large number of beamwidths. The utility of using planar array feeds for correcting spherical phase aberrations is investigated to overcome the performance degradation effects. Two different methodologies are developed for the array excitation coefficients determination based on phase conjugate matching and the results are compared. Using the compensating feed array, the radiation characteristics of the compensated spherical reflector are simulated for no scan and large scan cases and the results are compared with the uncompensated case to show performance improvement. In order to demonstrate the technological readiness of the concept a 1.5-m breadboard model is designed to be built for experimental measurements. Some important mechanical design tolerances and realistic array feed topologies are investigated. The antenna concept developed in this paper is advocated to be used in the next generation of geostationary satellite antenna systems for remote sensing radar applications.  相似文献   
3.
The effects of measurement errors appearing during the implementation of the microwave holographic technique are investigated in detail, and many representative results are presented based on computer simulations. The numerical results are tailored for cases applicable to the utilization of the holographic technique for the NASA's Deep Space Network antennas, although the methodology of analysis is applicable to any antenna. Many system measurement topics are presented and summarized  相似文献   
4.
The use of YBa2Cu3O7-x and Tl2CaBa2Cu2O8 high-temperature superconducting thin films to fabricate frequency selective surfaces (FSS) at millimeter-wave frequencies (75-110 GHz) is discussed. An analytical/numerical model was applied, using a Floquet expansion and the method of moments, to analyze bandstop superconducting frequency selective surfaces. Experimental results were compared with the model, and showed agreement with resonant frequency prediction with an accuracy of better than 1%. The use of the superconducting frequency selective surfaces as quasi-optical millimeter-wave bandpass filters was also demonstrated  相似文献   
5.
Although many reflector antennas possess circular projected apertures, there are recent satellite and ground antenna applications for which it is desirable to employ reflectors with elliptical apertures. Here a modification of the Jacobi-Bessel expansion is presented for the diffraction analysis of reflectors with elliptical apertures. A comparative study is also performed between this modified Jacobi-Bessel algorithm and the one which uses the Jacobi-Bessel expansion over a circumscribing circular region. Numerical results are presented for offset reflectors with elliptical and circular apertures and the improved convergence properties of the modified algorithm are highlighted.  相似文献   
6.
Fractal geometry involves a recursive generating methodology that results in contours with infinitely intricate fine structures. This geometry, which has been used to model complex objects found in nature such as clouds and coastlines, has space-filling properties that can be utilized to miniaturize antennas. These contours are able to add more electrical length in less volume. In this article, we look at miniaturizing wire and patch antennas using fractals. Fractals are profoundly intricate shapes that are easy to define. It is seen that even though the mathematical foundations call for an infinitely complex structure, the complexity that is not discernible for the particular application can be truncated. For antennas, this means that we can reap the rewards of miniaturizing an antenna using fractals without paying the price of having to manufacture an infinitely complex radiator. In fact, it is shown that the required number of generating iterations, each of which adds a layer of intricacy, is only a few. A primer on the mathematical bases of fractal geometry is also given, focusing especially on the mathematical properties that apply to the analysis of antennas. Also presented is an application of these miniaturized antennas to phased arrays. It is shown how these fractal antennas can be used in tightly packed linear arrays, resulting in phased arrays that can scan to wider angles while avoiding grating lobes  相似文献   
7.
A novel design of a microstrip patch antenna with switchable slots (PASS) is proposed to achieve circular polarization diversity. Two orthogonal slots are incorporated into the patch and two pin diodes are utilized to switch the slots on and off. By turning the diodes on or off, this antenna can radiate with either right hand circular polarization (RHCP) or left hand circular polarization (LHCP) using the same feeding probe. Experimental results validate this concept. This design demonstrates useful features for wireless communication applications and future planetary missions  相似文献   
8.
Technological demands have brought a renewed interest in the application of large reflector antennas with steadily increasing operating frequencies and antenna dimensions. The high surface accuracy of the main reflector required by these antennas can often not be achieved with available manufacturing technologies. The utilization of a shaped subreflector for main reflector-distortion compensation is considered an effective measure to enhance the overall radiation performance of an antenna system. In the process of evaluating the suitability of the subreflector shaping, however, it is crucial to accurately assess the most suitable subreflector shape within a reasonable amount of computational time. This is especially true for electrically large reflectors, where simple analysis of the radiation characteristics already creates a serious computational burden, moreover, since reflector shaping is a synthesis process that necessitates repeated computation of the radiation characteristics. In this paper, the development of an efficient computational tool for subreflector shaping is presented. The subreflector shaping is performed through a combination of geometrical optics (GO) and physical optics (PO) on the subreflector and the main reflector, respectively. To significantly limit the number of parameters subject to optimization, the subreflector surface is parameterized by the coefficients of a global, orthogonal Fourier-Jacobi set (related to Zernike polynomials), which allows us to accurately represent a surface with only a small number of coefficients. The incorporation of this surface expansion into a GO/PO synthesis technique is detailed, representative results are given for a computationally challenging reflector configuration, and the tolerances for the shaped subreflector surface are studied.  相似文献   
9.
The radiation pattern of a feed element is approximately described by a simple function(cos theta)^{q}. For a given element spacing of the feed array, we give simple formulas for estimating the practical value ofqwhen the element is an open-ended rectangular waveguide, an open-ended circular waveguide, a pyramidal horn, or a cigar antenna.  相似文献   
10.
An improved method for determining the test zone field of compact range reflectors is presented. The plane wave spectrum (PWS) approach is used to obtain the test zone field from knowledge of the reflector aperture field distribution. The method is particularly well suited to the analysis of reflectors with a linearly serrated rim for reduced edge diffraction. Computation of the PWS of the reflector aperture field is facilitated by a closed-form expression for the Fourier transform of a polygonal window function. Inverse transformation in the test zone region is accomplished using a fast Fourier transform (FFT) algorithm with a properly adjusted sampling rate (which is a function of both the reflector size and the distance from the reflector). The method is validated by comparison with results obtained using surface current and aperture field integration techniques. The performance of several serrated reflectors is evaluated in order to observe the effects of edge diffraction on the test zone fields  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号