首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   2篇
工业技术   7篇
  2018年   2篇
  2017年   1篇
  2013年   1篇
  2011年   2篇
  1998年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
In this research, a Bearing Reinforcement Earth (BRE) wall with a residual clay stone backfill was successfully implemented as an alternative truck ramp support for an on-site crusher plant in the Mae Moh mine, Thailand. The performance of the BRE wall during and after the end of construction as well as during the service state was evaluated in terms of, settlement, bearing stress, lateral movement, lateral earth pressure and tension force in the reinforcements. Bearing reinforcement is a cost-effective inextensible earth reinforcement, which is composed of a longitudinal member and transverse members. The maximum settlement at the end of construction (20 days) was about 5 mm. The installation of the truck ramp (10 days after the end of construction) resulted in an immediate settlement of about 2 mm. The final settlement due to the backfill, truck ramp and truck load after 270 days was found to be uniform due to the contribution of bearing reinforcement and was approximately 25 mm. The bearing stress which was uniformly distributed was found to increase rapidly with construction time, which was in agreement with the relatively uniform settlements. The lateral wall movement at the front and lateral sides at the end of construction was very small with the maximum movement (at the top of the wall) found to be less than 10 mm. As such, the ratio of lateral movement to height (δ/H) was found to be approximately 0.12%, which was lower than the allowable value of 0.4%. With this low δ/H and the insignificant change in the measured settlement and lateral movement during service, the BRE wall was considered to have a very high stability. The coefficients of lateral earth pressure, K and depth relationship were proposed based on the analysis of measured maximum tensile force in the reinforcements. The maximum tension plane of the BRE wall could be represented by the coherent gravity hypothesis. Using the proposed K and maximum tension plane, the internal stability of the BRE wall was furthermore examined. A proposed method of designing the BRE wall with claystone backfill was also proposed.  相似文献   
2.
This paper presents analytical results of the diurnal variations in Ku band rain attenuation along earth–space paths at four locations in Southeast Asia and proposes a new model that can predict rain fade in a short period of every 2 h daily. Data from four radiometers and four rain gauges over a 3 year period were analysed to obtain the characteristics of diurnal variations in rain attenuation and rainfall as well as cumulative attenuation distributions in every 2 h interval. The results of this analysis are applied to develop an intensive prediction model using the knowledge of rainfall and attenuation statistics. This model is tested with the measured data and is found to be useful for the design of a more efficient Ku band satellite system especially between 99 per cent and 99·9 per cent link availability in an area of heavy rainfall. © 1998 John Wiley & Sons, Ltd.  相似文献   
3.
4.
The in-situ deep mixing technique has been established as an effective means to effect columnar inclusions into soft Bangkok clay to enhance bearing capacity and reduce settlement. In this paper, an attempt is made to identify the critical factors governing the strength development in cement admixed Bangkok clay in both the laboratory and the field. It is found that clay-water/cement ratio, wc/C is the prime parameter controlling the laboratory strength development when the liquidity index varies between 1 and 2. Based on this parameter and Abrams' law, the strength prediction equation for various curing times and combinations of clay water content and cement content is proposed and verified. This will help minimize the number of trials necessary to arrive at the quantity of cement to be admixed. Besides the wc/C, the strength of deep mixing column is controlled by the execution and curing conditions. For low strength improvement (laboratory 28-day strength less than 1,500 kPa), the field strength of the deep mixing columns, quf, made up from both dry and wet mixing methods is higher than 0.6 times the laboratory strength, qul. The quf/qul ratios for the wet mixing columns are generally higher than those for the dry mixing columns. This higher strength ratio is due to the dissipation of the excess water in the column (consolidation) caused by the field stress. The water to cement ratio, W/C, of 1.0 is recommended for the wet mixing method of the soft Bangkok clay. A fast installation rate was shown to provide high quality for low strength columns. Suggestions are made for improving the deep mixing of soft Bangkok clay, which are very useful both from economic and engineering viewpoints.  相似文献   
5.
Fly ash and biomass ash have been widely accepted as waste materials substituting Portland cement. In this paper, the role of these two ashes on the strength development of cement admixed low-swelling Bangkok clay is investigated via unconfined compressive (UC) test and thermal gravity (TG) analysis. Fly ash and biomass ash are dispersing materials, increasing the reactive surface of the cement grains. The pozzolanic reaction does not play any significant role on the strength development with time since the amount of Ca(OH)2 is insufficient to react with the ashes. The contribution of the dispersing effect to the strength development is regarded akin as an addition of cement. Based on this premise, the clay–water/cement ratio hypothesis for blended cement admixed clay is proposed for analyzing and assessing the strength development. Even with the difference in water content, cement content and ash content, the blended cement admixed clay samples having the same clay–water/cement ratio, wc/C possess practically the same stress–strain response and strength. The relationship among strength, clay–water/cement ratio, and curing time for the blended cement admixed Bangkok clay is finally developed and verified. It is useful to assess the strength at any curing time wherein water content, cement content, and ash content vary over a wide range by using the test result of a single laboratory trial. For the economic mix design (the most effective dispersing effect), an addition of 25% ash is recommended. It can save on the input of cement up to 15.8%.  相似文献   
6.
The high price of different biodiesels and the need for many of their raw ingredients as food materials are the main constraints to be overcome when seeking the best potential alternative fuels to petro-diesel. Apart from that, some properties like high density, viscosity and acid value along with low cloud and pour points preclude their use in compression ignition(CI) engines as these properties can cause serious damage to the parts of the engine and reduce engine life. In this experiment, biodiesel was produced from the oil of unused algae by a two-step ‘acid esterification followed by transesterification' procedure. Taguchi's method was applied to design the experiment, and a L25 orthogonal array was prepared to optimize the biodiesel production procedure. The optimized conditions for transesterification were: methanol to oil molar ratio of 6:1, catalyst(KOH) concentration of 2.5 wt%, reaction time of 90 min and reaction temperature of 50 ℃,achieving a biodiesel production of 89.7% with free fatty acid content of 0.25%. It was found that the CI engine emitted less CO, CO_2 and hydrocarbon and higher NO_x using algal biodiesel than that using petro-diesel. All properties of the algal biodiesel were within the limit of ASTM standards.  相似文献   
7.
Biodiesel from inedible sources has become prominent in last few decades. But it is economically incompatible with petroleum diesel. At the same time, both petro-diesel and biodiesels are concerned with environmental pollution, global warming, etc. Algae, on the other hand, utilize CO2 for their growth and can minimize some sort of pollution level and results in carbon credit for a country. In Punjab, India, algae are seen to grow in many water bodies. But all those are taken away and dumped in vats. Some of this huge biomass was used for production of biodiesel in this work. Extraction of oil from algae was conducted by using Soxtherm(solvent extraction). An amount of 9 wt% of algal oil was extracted by comparatively costly hexane, whereas 8% extraction was done by cheaper acetone. In the transesterification reaction, molar ratio(methanol: oil) of 6:1, catalyst(KOH) concentration of 3 wt%, reaction temperature of 60 °C, 60 min reaction time and a settling time of 2.5 h were found to be optimum conditions to get maximum ester with minimum free fatty acid content and viscosity. A statistical analysis for the transesterification procedure also showed a methanol-to-oil molar ratio of 6:1 and catalyst concentration of 3 wt% to be the optimum. Characterization of biodiesel was done and compared with ASTM/BIS standards. Most important properties of biodiesel ester like viscosity(3.12 c St or 3.12 mm2/s), cloud and pour point(-1 and-6 °C, respectively), flash and fire point(153 and 158 °C), carbon residue content(0.03%), acid number(0.36 mg of KOH/gm) were within the range of concerned standards.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号