首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
工业技术   3篇
  2018年   1篇
  2017年   1篇
  1998年   1篇
排序方式: 共有3条查询结果,搜索用时 109 毫秒
1
1.
As web applications become the most popular way to deliver essential services to customers, they also become attractive targets for attackers. The attackers craft injection attacks in database-driven applications through the user-input fields intended for interacting with the applications. Even though precautionary measures such as user-input sanitization is employed at the client side of the application, the attackers can disable the JavaScript at client side and still inject attacks through HTTP parameters. The injected parameters result in attacks due to improper server-side validation of user input. The injected parameters may either contain malicious SQL/XML commands leading to SQL/XPath/XQuery injection or be invalid input that intend to violate the expected behavior of the web application. The former is known as an injection attack, while the latter is called a parameter tampering attack. While SQL injection has been intensively examined by the research community, limited work has been done so far for identifying XML injection and parameter tampering vulnerabilities. Database-driven web applications today rely on XML databases, as XML has gained rapid acceptance due to the fact that it favors integration of data with other applications and handles diverse information. Hence, this work proposes a black-box fuzzing approach to detect XQuery injection and parameter tampering vulnerabilities in web applications driven by native XML databases. A prototype XiParam is developed and tested on vulnerable applications developed with a native XML database, BaseX, as the backend. The experimental evaluation clearly demonstrates that the prototype is effective against detection of both XQuery injection and parameter tampering vulnerabilities.  相似文献   
2.
We present an adaptive finite impulse response (FIR) filtering approach, which is referred to as the Amplitude and Phase EStimation (APES) algorithm, for interferometric synthetic aperture radar (SAR) imaging. We compare the APES algorithm with other FIR filtering approaches including the Capon and fast Fourier transform (FFT) methods. We show via both numerical and experimental examples that the adaptive FIR filtering approaches such as Capon and APES can yield more accurate spectral estimates with much lower sidelobes and narrower spectral peaks than the FFT method. We show that although the APES algorithm yields somewhat wider spectral peaks than the Capon method, the former gives more accurate overall spectral estimates and SAR images than the latter and the FFT method.  相似文献   
3.
We present Silverback+, a scalable probabilistic framework for accurate association rule and frequent item-set mining of large-scale social behavioral data. Silverback+ tackles the problem of efficient storage utilization and management via: (1) probabilistic columnar infrastructure and (2) using Bloom filters and sampling techniques. In addition, probabilistic pruning techniques based on Apriori method are developed, for accelerating the mining of frequent item-sets. The proposed target-driven techniques yield a significant reduction of the size of the frequent item-set candidates, as well as the required number of repetitive membership checks through a novel list intersection algorithm. Extensive experimental evaluations demonstrate the benefits of this context-aware consideration and incorporation of the infrastructure limitations when utilizing the corresponding research techniques. When compared to the traditional Hadoop-based approach for improving scalability by straightforwardly adding more hosts, Silverback+ exhibits a much better runtime performance, with negligible loss of accuracy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号