首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
工业技术   7篇
  2012年   1篇
  2009年   1篇
  2003年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
We have successfully developed a quarter‐wave retardation film (QWF) for wide viewing angle 3D liquid crystal displays (3D‐LCDs) that provides high luminance, low crosstalk, low color change, and low head‐tilt‐angle dependency. It was found that the out‐of‐plane retardation (Rth) of the QWF in the LCD needs to be close to 0 nm in order to improve the 3D display properties at an off‐axis position and that the in‐plane retardation (Re) needs to be adjusted from 120 to 130 nm to achieve low color change with head tilting. We adopted a coating process for making our QWF because of its potential for retardation control. 3D‐LCDs with this QWF whose Rth was nearly zero had high performance and allowed off‐axis other than on‐axis.  相似文献   
2.
The preparation of platinum(II) complexes containing L-serine using K(2)[PtCl(4)] and KI as raw materials was undertaken. The cis-trans isomer ratio of the complexes in the reaction mixture differed significantly depending on whether KI was present or absent in the reaction mixture. One of the two [Pt(L-ser-N,O)(2)] complexes (L-ser=L-serinate anion) prepared using KI crystallizes in the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions a=8.710(2) A, b=9.773(3) A, c=11.355(3) A, Z=4. The crystal data revealed that this complex has a cis configuration. The other [Pt(L-ser-N,O)(2)] complex also crystallizes in the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions a=7.0190(9) A, b=7.7445(6) A, c=20.946(2) A, Z=4. The crystal data revealed that this complex has a trans configuration. The 195Pt NMR chemical shifts of trans-[Pt(L-ser-N,O)(2)] and cis-[Pt(L-ser-N,O)(2)] complexes are -1632 and -1832 ppm, respectively. 195Pt NMR and HPLC measurements were conducted to monitor the reactions of the two [Pt(L-ser-N,O)(2)] complexes with HCl. Both 195Pt NMR and HPLC showed that the reactivities of cis- and trans-[Pt(L-ser-N,O)(2)] toward HCl are different: coordinated carboxyl oxygen atoms of trans-[Pt(L-ser-N,O)(2)] were detached faster than those for cis-[Pt(L-ser-N,O)(2)].  相似文献   
3.
Gene(s) in the MHC of the NZW strain (H-2z) up-regulate(s) systemic lupus erythematosus (SLE) in (NZB x NZW) F1 mice. So far, two plausible mechanisms have been implicated: (i) unique mixed haplotype class II molecules formed in the F1 mice act as a restriction element for self-reactive T cells and (ii) a unique polymorphism in the H-2-linked NZW tumor necrosis factor (TNF)-alpha allele which down-regulates TNF-alpha is contributory. Because of the difficulty in dissecting these alleles within the H-2 complex, it has not been determined which is indeed the case. We addressed this issue by establishing three different H-2-congenic (NZB x NZW) F1 mice bearing distinct haplotypes at class II and TNF-alpha regions, i.e. (NZB x NZW) F1 (H-2d/z:A(d/u)E(d/u)TNF(d/z)), (NZB x NZW.PL) F1 (H-2(d/u):A(d/u)E(d/u)TNF(d/d)) and (NZB x NZW.H-2d) F1 (H-2(d/d):A(d/d)E(d/d)TNF(d/d)). Among these, only (NZB x NZW) F1 produced a markedly lower level of TNF-alpha, due to the unique NZW TNF-alpha allele (TNF(z)). Studies of anti-DNA antibodies and lupus nephritis revealed that, compared to (NZB x NZW) F1, the disease of (NZB x NZW.H-2d) F1 was markedly reduced. In (NZB x NZW.PL) F1, the onset of renal disease was significantly delayed, while the extent of proteinuria and renal histopathology in individuals that had developed the disease was comparable to that seen in (NZB x NZW) F1. It seems likely that both class II and TNF-alpha gene polymorphisms are functioning as H-2-linked predisposing genetic elements, and that the TNF-alpha polymorphism acts to modulate an initial process of the renal disease.  相似文献   
4.
This paper describes the design of a speech coder called pitch synchronous innovation CELP (PSI-CELP) for low hit-rate mobile communications. PSI-CELP is based on CELP, but has more adaptive excitation structures. In voiced frames, instead of conventional random excitation vectors, PSI-CELP converts even the random excitation vectors to have pitch periodicity by repeating stored random vectors as well as by using an adaptive codebook, in silent, unvoiced, and transient frames, the coder stops using the adaptive codebook and switches to fixed random codebooks. The PSI-CELP coder also implements novel structures and techniques: an FIR-type perceptual weighting filter using unquantized LPC parameters, a random codebook with a conjugate structure trained to be robust against channel errors, codebook search with delayed decision, a gain quantization with sloped amplitude, and a moving average prediction coding of LSP parameters, Our speech coder is implemented by DSP chips. Its coded speech quality at 3.6 kb/s with 2.0 kb/s redundancy is comparable to that of the Japanese full-rate VSELP coder at 6.7 kb/s with 4.5 kb/s redundancy. The basic structure of this PSI-CELP coder has been chosen as the Japanese half-rate speech codec for digital cellular telecommunications  相似文献   
5.
Characteristics of the pseudomorphic inverted HEMT (P-I-HEMT) are compared with those of the pseudomorphic HEMT. Both devices were fabricated in enhancement mode by the same process. P-I-HEMT shows a higher maximum transconductance of 590 mS/mm, and higher K-value of 600 mS/Vmm at a threshold voltage of O V, and better pinch-off characteristics than its counterpart. Noise characteristics of P-I-HEMT are reported. Lower noise figure (1.0 dB at 18 GHz) was obtained in the P-I-HEMT. It is concluded that the P-I-HEMT shows far better noise characteristics than the other at low drain voltage and current  相似文献   
6.
7.
In March 2008 the ITU-T approved a new wideband speech codec called ITU-T G.711.1. This Recommendation extends G.711, the most widely deployed speech codec, to 7 kHz audio bandwidth and is optimized for voice over IP applications. The most important feature of this codec is that the G.711.1 bitstream can be transcoded into a G.711 bitstream by simple truncation. G.711.1 operates at 64, 80, and 96 kb/s, and is designed to achieve very short delay and low complexity. ITU-T evaluation results show that the codec fulfils all the requirements defined in the terms of reference. This article presents the codec requirements and design constraints, describes how standardization was conducted, and reports on the codec performance and its initial deployment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号