首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   12篇
  国内免费   2篇
工业技术   203篇
  2024年   1篇
  2023年   3篇
  2022年   10篇
  2021年   14篇
  2020年   10篇
  2019年   19篇
  2018年   24篇
  2017年   11篇
  2016年   12篇
  2015年   7篇
  2014年   17篇
  2013年   14篇
  2012年   10篇
  2011年   14篇
  2010年   5篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1981年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有203条查询结果,搜索用时 281 毫秒
1.
Chiral 1,1’-binaphthyl-linked diporphyrin ‘tweezers’ (R)-1/(S)-1 and the corresponding zinc(II) complexes (R)-2/(S)-2 were prepared as chiral host molecules, and their utility for chiral analyses (especially enantiomeric excess (ee) determinations) were evaluated. Tris(1-n-dodecyl)porphyrins were used for the first time as the interacting units. Host capabilities of the diporphyrin tweezers were investigated by titrations with (R,R)- and (S,S)-cyclohexane-1,2-diamine (CHDA). The host molecules could be used as multichannel probes of ee by using UV-vis, circular dichroism (CD), fluorescence emission and 1H nuclear magnetic resonance (1H-NMR) methods. Chiral configurations could also be differentiated using CD or 1H-NMR spectroscopy. All three optical techniques give good resolution of ee with reasonable sensitivity considering the low concentrations used (ca. 10−6 mol·L−1). The ee determination of CHDA enantiomers using NMR spectroscopy is also possible because of the reasonably well separated resonances in the case of (R,R)- and (S,S)-CHDA. Non-metallated (R)-1/(S)-1 hosts could not be used to detect chiral information in a strongly acidic chiral guest. This work demonstrates the utility of 1,1’-binapthyl-linked chiral hosts for chiral analysis of ditopically interacting enantiomers.  相似文献   
2.
Introduction: Staphylococcal infection of endogenous origin is an important cause of morbidity and mortality in patients who receive hemodialysis (HD). The risk of such infections in nasal carriers of the organism is well defined. Extranasal carriage of the organism at extranasal sites may pose similar risks. Methods: A total of 70 patients about to undergo internal jugular vein catheterization for HD were enrolled in this prospective observational study. Swab cultures were obtained from anterior nares, posterior pharynx, axillae, toe web spaces, and vascular access sites at baseline and 1 week later. A patient was defined as a persistent carrier when the same organism was grown in both samples. Staphylococcus aureus bloodstream infections were assessed by blood and catheter tip cultures over a 90‐day period. Findings: The mean age of the patients was 43.71 ± 16.2 years. Persistent S. aureus carriage at anterior nares, throat, axilla, toe web spaces, vascular access site, and all sites was documented in 27.9%, 11.4%, 40%, 32.9%, 4.3%, and 64.2% of patients, respectively. Fifteen patients developed S. aureus infections. Catheter related S. aureus infections (CRI) were more likely in persistent carriers than nonpersistent carriers with odds ratios (95% CI) of 10.2 (2.8–37.1), 8.6 (1.7–42.2), 17.3 (3.4–86.0), 3.0 (0.9–9.8), and 1.9 (0.2–22.4) for anterior nares, throat, axilla, toe web spaces, and vascular access site carriers, respectively. The probability of developing CRI in persistent S. aureus carriers was 55% compared to none in noncarriers at 90 days (P = 0.04). Discussion: Extranasal S. aureus carriage is as significant a risk factor as nasal carriage for staphylococcal infections in patients on HD through catheters. The study is limited by lack of molecular phenotyping.  相似文献   
3.
4.
Studies with purified subcellular organelles from rat liver indicate that nervonic acid (C24:1) is beta-oxidized preferentially in peroxisomes. Lack of effect by etomoxir, inhibitor of mitochondrial beta-oxidation, on beta-oxidation of lignoceric acid (C24:0), a peroxisomal function, and that of nervonic acid (24:1) compared to the inhibition of palmitic acid (16:0) oxidation, a mitochondrial function, supports the conclusion that nervonic acid is oxidized in peroxisomes. Moreover, the oxidation of nervonic and lignoceric acids was deficient in fibroblasts from patients with defects in peroxisomal beta-oxidation [Zellweger syndrome (ZS) and X-linked adrenoleukodystrophy (X-ALD)]. Similar to lignoceric acid, the activation and beta-oxidation of nervonic acid was deficient in peroxisomes isolated from X-ALD fibroblasts. Transfection of X-ALD fibroblasts with human cDNA encoding for ALDP (X-ALD gene product) restored the oxidation of both nervonic and lignoceric acids, demonstrating that the same molecular defect may be responsible for the abnormality in the oxidation of nervonic as well as lignoceric acid. Moreover, immunoprecipitation of activities for acyl-CoA ligase for both lignoceric acid and nervonic acid indicate that saturated and monoenoic very long chain (VLC) fatty acids may be activated by the same enzyme. These results clearly demonstrate that similar to saturated VLC fatty acids (e.g., lignoceric acid), VLC monounsaturated fatty acids (e.g., nervonic acid) are oxidized preferentially in peroxisomes and that this activity is impaired in X-ALD. In view of the fact that the oxidation of unsaturated VLC fatty acids is defective in X-ALD patients, the efficacy of dietary monoene therapy, "Lorenzo's oil," in X-ALD needs to be evaluated.  相似文献   
5.
6.
7.
Starch isolated from maranta (Maranta arundinacea) tuber and studied for its various physicochemical characteristics. The amylose content of the starch was 24.8%. SEM showed that the granules were small indented and spherical. Maranta starch granule size has a range of 2.92–6.42 μm, (mean of 4.84 μm), length/degree of 1.20, and roundness of 0.73. Maranta starch has a gelatinization temperature of 74.8°C, peak viscosity of 498 BU, and cold paste viscosity of 669 BU. It also possessed higher freeze-thaw stability. Dynamic rheological properties of maranta starch, measured using parallel plate geometry showed increased storage modulus (G’) values, while loss modulus (G″) values were decreased with increasing frequency values (0–100 Hz). The low gelatinization temperature and high freeze thaw stability of starch indicates its potential for application as a thickener in food industries.  相似文献   
8.
Decaffeination of food and beverage products is in high demand. In this study, a caffeine-degrading bacterium Burkholderia spp. was isolated from coffee plantation area of Chiang Mai province of Thailand. The bacterial isolates were first identified by morphological, physiological, and biochemical tests followed by 16S rDNA analysis. The bacterial isolate of Burkholderia spp. showed 45.5% of caffeine degradation in caffeine containing media (2.5 g/L) after 110 h of incubation period. Burkholderia spp. showed only 2.6% caffeine degradation when exposed to high concentrations of caffeine containing medium (20 g/L). The growth rate of Burkholderia spp. declined with the increase in the caffeine concentration, which indicated the inhibiting effect of caffeine at very high concentrations. The maximum growth rate of 0.053 h?1 was observed at 2.5 g/L of caffeine. Overall due to high caffeine tolerance and biodegradation of caffeine, Burkholderia spp. can be effectively used to degrade caffeine from agro-industrial wastes targeted for value added food applications and environmental remediation.  相似文献   
9.
We fabricate thin epitaxial crystal silicon solar cells on display glass and fused silica substrates overcoated with a silicon seed layer. To confirm the quality of hot‐wire chemical vapor deposition epitaxy, we grow a 2‐µm‐thick absorber on a (100) monocrystalline Si layer transfer seed on display glass and achieve 6.5% efficiency with an open circuit voltage (VOC) of 586 mV without light‐trapping features. This device enables the evaluation of seed layers on display glass. Using polycrystalline seeds formed from amorphous silicon by laser‐induced mixed phase solidification (MPS) and electron beam crystallization, we demonstrate 2.9%, 476 mV (MPS) and 4.1%, 551 mV (electron beam crystallization) solar cells. Grain boundaries likely limit the solar cell grown on the MPS seed layer, and we establish an upper bound for the grain boundary recombination velocity (SGB) of 1.6x104 cm/s. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
10.
Multiferroic composites of spinel ferrite and ferroelectric xCoFe2O4 – (1-x)Na0.5Bi0.5TiO3 (with x = 0.10,0.30,0.50) were efficiently prepared by standard solid state reaction mechanism. X-ray diffractometer was used to analyze crystal structure of the prepared composites. The observed XRD patterns of the composites comprise peaks of both the phases i.e. ferrite and ferroelectric, with no sign of secondary peaks. Rietveld refinement of XRD data further confirms the coexistence of these two phases with cubic (Fd3m) and rhombohedral (R3c) symmetry corresponding to ferrite and ferroelectric phase respectively. The 3-dimensional overview of crystal structure of pure CoFe2O4 and Na0.5Bi0.5TiO3 and of composite 0.50CoFe2O4?0.50Na0.5Bi0.5TiO3 is generated by using refined parameters. The dielectric constant (ε´) and dielectric loss (tanδ) values were recorded as a function of frequency ranging from 100?Hz to 7?MHz and at different temperatures. Both ε´ and tanδ follow dispersion pattern at lower frequencies while show frequency independent behavior at higher frequencies. The magnetic evaluation carried by analyzing M-H hysteresis loop reveals the ferrimagnetic characteristics of these composites. The highest value of magnetic moment is 1.12μB observed for composite 0.50CoFe2O4 – 0.50Na0.5Bi0.5TiO3. Magnetoelectric (ME) voltage coefficient (α) was also demonstrated to observe the interaction between ferrite and ferroelectric phases. The highest value of α (72.72μV/Oe cm) is obtained for low ferrite composition 0.10CoFe2O4 – 0.90Na0.5Bi0.5TiO3, which suggests the dependence of magnetoelectric response on the resistivity of the composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号