首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
工业技术   6篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
We have synthesized and characterized donor–π–spacer–acceptor type molecules in which 1,3,4-oxadiazoles are π-spacers, triphenylamines are the donors and cyanoacetic acid are the acceptors for use as sensitizers in dye-sensitized solar cells (DSSCs). Detailed absorption, emission, electrochemical, photoelectrochemical and computational studies have been carried out on five novel derivatives. The dyes have an absorption range of 377–388 nm, and an emission in the range of 494–540 nm. There is a large charge transfer from the donor side to the acceptor side on excitation. The propeller shape of the triphenylamine and the bulky substituents on it help in reducing the dye-aggregation on TiO2 surface. The dyes exhibited good overall conversion efficiency (2.79–3.21%). Plane wave calculations indicate that the dye has a reasonably strong binding to the TiO2 surface and the generated DOS picture shows an overlap of the molecular orbitals of the dye and the TiO2 bands. We conclude that the dyes have a promising role as sensitizers in DSSC.  相似文献   
2.
Two novel D–A–π–A metal free dyes with triphenylamine as donor, dithiophene-diketo-pyrrolo-pyrrole as acceptor unit, thiophene and phenyl π-conjugated bridges and a cyanoacetic acid as electron acceptor (TDPP1 and TDPP2 were denoted for thiophene and phenyl π-conjugated bridge, respectively) have been designed and used as sensitizers for DSSCs. Incorporation of dithiophene-diketo-pyrrolo-pyrrole, reduces the band gap significantly. The influence of π-conjugated bridge on optical and electrochemical properties were investigated. Results demonstrated that the absorption band of TDPP with thiophene π-conjugated bridge has red shifted due to the enhancement of electron donating ability of π-conjugated bridge. The DSSC based on TDPP1 shows prominent power conversion efficiency about 4.81%, which is higher that for TDPP2 (3.42%). The electrochemical impedance spectroscopy analysis reveal that the charge recombination resistance at the TiO2/dye/electrolyte interface for the DSSC based on TDPP1 is higher than that for TDPP2, which improves both Jsc and Voc. The PCE of the DSSC based on TDPP1 is further improved up to 6.34%, when deoxycholic acid (DCA) was employed as coadsorbant.  相似文献   
3.
The control of the doping ratio of a blue‐emitting matrix by an orange emitter with high accuracy still remains very challenging in the development of reproducible white organic light‐emitting diodes (WOLEDs). In this work, the development of an organophosphorus dopant that presents a high doping rate in order to reach white emission is reported. The increase of the doping rate has a small impact on the CIE co‐ordinates and on the EQE. These results are very appealing towards the development of “easy‐to‐make” WOLEDS.  相似文献   
4.
With a general aim to make anthracene derivatives multifunctional (n-type emitter) and also study their suitability as electron transport layers for organic light emitting diodes (OLED), we report the synthesis and characterization of five novel molecules in which the 9 and 10 positions of anthracene have been directly substituted by 2,5-diphenyl-1,3,4-oxadiazole groups. We have carried out detailed characterization of these molecules which include photophysical, electrochemical, thermal, electroluminescent and computational studies. The electron affinity is very high, around 3.7 eV, and the ionization potential is around 6.7–6.8 eV, which is relatively higher than the most commonly used electron transport electroluminescent layer Alq3. The studies reveal that the new molecules being reported by us, in addition to the high thermal stability, are quite efficient in a two layer unoptimized nondoped device with the device structure ITO/α-NPD/10a11b/LiF/Al and have an emission in pure blue. They also show very high efficiency as electron transport layer in device structure ITO(120 nm)/α-NPD(30 nm)/Ir(ppy)3 doped CBP(35 nm)/BCP(6 nm)/10a(28 nm)/LiF(1 nm)/Al(150 nm). From these studies we conclude that these anthracene derivatives also have considerable potential as multifunctional layers and as electron transport layers in OLED.  相似文献   
5.
Charge transport in 5,5′-(2,6-di-tert-butylanthracene-9,10-diyl)bis(2-p-tolyl-1,3,4-oxadiazole) is investigated as a function of temperature and organic layer thickness. The thickness dependence of the current indicates towards the trap charge limited conduction (TCLC) with a field and temperature dependent mobility. The density of trap states has been found to be dependent on sample thickness. As the thickness has increased from 80 nm to 120 nm, trap energy has correspondingly increased from 78 meV to 130 meV. TCLC model with Poole Frenkel type field dependent mobility has been fitted into the data and has been found in excellent agreement. Temperature dependency of zero field mobility (μ0) and β has been estimated from the model.  相似文献   
6.
Two donor-π-acceptor (D-π-A) organic dyes with carbazole as donor, phenylethynyl, thienylethynyl as π-spacers and cyanoacrylic acid as acceptor, have been synthesized and characterized. These dyes exhibit charge transfer character in the ground and excited states as supported by the UV–vis and fluorescence studies. They also show interesting electrochemical properties. DFT and TDDFT studies reveal that large intramolecular charge transfer takes place from the HOMO to LUMO, though the donor carbazole is twisted (~51°) with respect to the π-conjugated spacer and acceptors with an idea of testing the dyes as sensitizers for DSSC. The DSSC devices were fabricated with these dyes by using redox electrolyte in a nonvolatile methoxypropionitrile solvent. The efficiency of the cells, short circuit current density, Jsc, and open circuit photovoltage, Voc, and fill factor, FF, has been obtained for the two molecules. Calculations based on DFT plane wave method reveal the strong binding of the dyes on the surface of TiO2 (1 0 1) surface. It is concluded that these dyes can play the role of sensitizers in DSSC.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号