首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
工业技术   5篇
  2022年   2篇
  2020年   1篇
  2013年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 640 毫秒
1
1.

In this paper, we propose to use Artificial Bee Colony (ABC) optimization to solve the joint mode selection, channel assignment, and power allocation (JMSCPA) problem to maximize system throughput and spectral efficiency. JMSCPA is a problem where the allocation of channel and power depends on the mode selection. Such problems require two step solution and are called bi-level optimization problems. As bi-level optimization increases the complexity and computational time, we propose a modified version of single-level ABC algorithm aided with the adaptive transmission mode selection algorithm to allocate the cellular, reuse, and dedicated modes to the DUs along with channel and power allocation based on the network traffic load scenarios. A single variable, represented by the users (CUs and DUs) is used to allocate mode selection, and channel allocation to solve the JMSCPA problem, leading to a simpler solution with faster convergence, and significant reduction in the computational complexity which scales linearly with the number of users. Further, the proposed solution avoids premature stagnation of conventional ABC into local minima by incorporating a modification in its update procedure. The efficacy of the ABC-aided approach, as compared to the results reported in the literature, is validated by extensive numerical investigations under different simulation scenarios.

  相似文献   
2.
Polar sea ice has been monitored quasi‐continuously over the last 30 years using passive microwave radiometers onboard three satellites in polar orbit, namely Nimbus‐5, Nimbus‐7 and Defense Meteorological Satellite Program (DMSP) series. A short overlap between Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus‐7 and Special Sensor Microwave Imager (SSM/I) onboard DMSP allowed inter‐calibration of the two sensors leading to a consistent series of long‐term sea‐ice measurements since 1978. With the launch of Multifrequency Scanning Microwave Radiometer (MSMR) onboard OCEANSAT‐1 in the polar sun‐synchronous orbit during 1999, India developed the capability to monitor the polar sea ice on a regular basis. The concurrent availability of SSM/I and MSMR over the last few years presents a valuable opportunity to attempt an inter‐comparison of MSMR with SSM/I measurements and derived sea‐ice parameters.

In this paper, we present an indirect validation of the brightness temperatures (T b) observed by MSMR with near‐simultaneous measurements from SSM/I over the Antarctic and Southern Polar Ocean regions. Simultaneous MSMR and SSM/I data from two contrasting seasons—summer and winter—for the 1999–2000 period have been used. Analysis includes a comparison of T b scatterograms to achieve confidence in the quantitative use of the T b data to derive various geophysical parameters, e.g. sea‐ice concentration and extent. Additionally, the T b images produced by the two sensors are compared to establish the capability of MSMR in reliable two‐dimensional portrayal of all the sea and continental ice features over the Antarctic Region. Based on a regression analysis between MSMR observed T b in different frequency channels and polarizations, and SSM/I‐derived sea‐ice concentration (SIC) values, we have developed algorithms to estimate SIC over the Southern Polar Ocean from MSMR data. The MSMR algorithms allow estimation of SIC with better than 10% rms error. MSMR SIC images faithfully capture the observed distribution of sea ice in all the sectors of the Southern Ocean both during summer and winter periods. Using the MSMR‐derived SIC, we have also derived monthly sea‐ice extent (SIE) estimates for a period extending for about 20 months from the beginning of the launch of MSMR. These estimates show excellent agreement with values derived from SSM/I. These analyses bring out the very high level of compatibility in the measurements and derived sea‐ice parameters produced by the two sensors.  相似文献   
3.
Wireless Personal Communications - Due to the limited resources of Internet of Things (IoT) nodes, routing protocols for these networks should be designed in such a way that not only reduce the...  相似文献   
4.
The ability to tune the resonant frequency of a self‐assembled ultrasonic metamaterial with mesoscale spatial resolution, after fabrication, by up to 250% is demonstrated. This tunability is achieved by the microlensing‐enabled modification of nanocontact features, wherein the metamaterial resonant elements “dig in” to the substrate. In addition to tunability exceeding prior MHz–GHz frequency ultrasonic metamaterial examples, the system presented herein can be tuned after assembly at a spatial resolution commensurate with the laser spot's diameter. It is posited that these aforementioned advantages will enable a new class of ultrasonic gradient index devices, such as ultrasonic elastic wave cloaks, that can be manufactured in a scalable manner and then rapidly tuned. Finally, it is expected that this large tunability at ultrasonic frequencies will have broader application to areas including optomechanics, acoustoplasmonics, quantum‐mechanical oscillators, and adhesion control.  相似文献   
5.
The substantial growth in the electronics industry has created a need for environmental and user-friendly alternatives to tin/lead (Sn/Pb) solders for attaching encapsulated surface mount components on rigid and flexible printed circuit boards (PCBs). Electronically conductive adhesives (ECAs) have been explored in this manner to establish mechanical as well as electrical joints between PCBs and surface mount components. Applications of conductive adhesive are limited due to serious concerns associated with the long-term reliability data of current commercial ECAs. One critical concern in wire bonding applications is the significant decrease in the bond strength and consequent loss of the conducting properties of adhesive due to silver migration. In this study, an effort is made to understand and model long-term silver migration phenomenon with respect to different parameters (duration of the migration, dry and wet conditions), and pull-out strength of silver wire embedded in an epoxy adhesive matrix. Morphology of embedded silver wire after migration and pull-out was also studied using scanning electron micrographs. Migration area increased with the duration of migration, and reduction in the pull-out strength was significant in wet condition as compared to dry condition. The increase in migration area was consistent with the reduction in pull-out strength in both wet and dry conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号