首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   3篇
工业技术   5篇
  2023年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  1974年   1篇
排序方式: 共有5条查询结果,搜索用时 93 毫秒
1
1.
In this study, a series of donor–acceptor–donor (D-A-D) type small molecules based on the fluorene and diphenylethenyl enamine units, which are distinguished by different acceptors, as holetransporting materials (HTMs) for perovskite solar cells is presented. The incorporation of the malononitrile acceptor units is found to be beneficial for not only carrier transportation but also defects passivation via Pb–N interactions. The highest power conversion efficiency of over 22% is achieved on cells based on V1359, which is higher than that of spiro-OMeTAD under identical conditions. This st shows that HTMs prepared via simplified synthetic routes are not only a low-cost alternative to spiro-OMeTAD but also outperform in efficiency and stability state-of-art materials obtained via expensive cross-coupling methods.  相似文献   
2.
Molecularly engineered novel dopant‐free hole‐transporting materials for perovskite solar cells (PSCs) combined with mixed‐perovskite (FAPbI3)0.85(MAPbBr3)0.15 (MA: CH3NH3+, FA: NH=CHNH3+) that exhibit an excellent power conversion efficiency of 18.9% under AM 1.5 conditions are investigated. The mobilities of FA‐CN, and TPA‐CN are determined to be 1.2 × 10?4 cm2 V?1 s?1 and 1.1 × 10?4 cm2 V?1 s?1, respectively. Exceptional stability up to 500 h is measured with the PSC based on FA‐CN. Additionally, it is found that the maximum power output collected after 1300 h remained 65% of its initial value. This opens up new avenue for efficient and stable PSCs exploring new materials as alternatives to Spiro‐OMeTAD.  相似文献   
3.
Molecularly engineered weakly conjugated hybrid porphyrin systems are presented as efficient sensitizers for solid‐state dye‐sensitized solar cells. By incorporating the quinolizino acridine and triazatruxene based unit as the secondary light‐harvester as well as electron‐donating group at the meso‐position of the porphyrin core, the power conversion efficiencies of 4.5% and 5.1% are demonstrated in the solid‐state devices containing 2,2′,7,7′‐tetrakis (N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spiro bifluorene as hole transporting material. The photovoltaic performance of the triazatruxene donor based porphyrin sensitizer is better than that of the previously published porphyrin molecules exhibiting strongly conjugated push–pull structure. The effect of molecular structure on the optical and electrochemical properties, the dynamics of charge extraction, as well as the photovoltaic performance are systematically investigated, which offers a new design strategy for further refinement of porphyrin molecules.  相似文献   
4.
A series of new branched hole transporting materials (HTMs) containing two diphenylamine‐substituted carbazole fragments linked by a nonconjugated methylenebenzene unit is synthesized and tested in perovskite solar cells. Synthesis of the investigated materials is performed by a simple two‐step synthetic procedure providing a target product in high yield. The isolated materials demonstrate good thermal stability and majority of the investigated compounds exist in an amorphous state, which is advantageous as there is no risk of crystallization directly in the film. The highest charge drift mobility of µ0 = 4 × 10?4 cm2 V?1 s?1, measured at weak electric fields, is by ca. one order of magnitude higher than that of Spiro‐OMeTAD under identical conditions. From the perovskite solar cell testing results, it can be seen that performance of two new HTMs ( V885 and V911 ) is on a par with Spiro‐OMeTAD. Due to the ease of synthesis, good thermal, optical and photophysical properties, this type of molecules hold great promise for practical application in commercial perovskite solar cells.  相似文献   
5.
A prototype powder trail generator was designed, fabricated, flight tested, and delivered to the Naval Air Station, Point Mugu, California. This generator emits a trail of powder with sufficient visibility to aid in the visual acquisition of a target drone. The powder generator functions under conditions that limit the use of oil smoke. Antiagglomerant-treated titanium dioxide pigment was dispersed with a wing pod unit that used high velocity gas jets to deagglomerate the powder before injection into a ram air tube. Flight tests were conducted which compared the powder trail with a conventional oil smoke trail, and aerial photographs showed that the brightness contrast of the powder smoke in the first plane length behind the plane exceeded that of the oil smoke at any location.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号