首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
工业技术   5篇
  2024年   1篇
  2023年   1篇
  2020年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 78 毫秒
1
1.
This study examines the effect of particle size, temperature, and weight fraction on the thermal conductivity ratio of alumina(Al2O3)/water nanofluids. A Al2O3/water nanofluid produced by the direct synthesis method served as the experimental sample, and nanoparticles, each of a different nominal diameter (20, 50, and 100 nm), were dispersed into four different concentrations (0.5, 1.0, 1.5, and 2.0 wt%). This experiment measured the thermal conductivity of nanofluids with different particle sizes, weight fractions, and working temperatures (10, 30, 50 °C). The results showed a correlation between high thermal conductivity ratios and enhanced sensitivity, and small nanoparticle size and higher temperature. This research utilized experimental data to construct a new empirical equation, taking the nanoparticle size, temperature, and lower weight fraction of the nanofluid into consideration. Comparing the regression results with the experimental values, the margin of error was within ?3.5% to +2.7%. The proposed empirical equation showed reasonably good agreement with our experimental results.  相似文献   
2.
Tseng  Huai-En  Shen  Shan-Hsiang 《Wireless Networks》2020,26(6):4459-4475

A network flow is required to be processed by multiple network functions such as PGW and SGW in mobile networks as a service function chain (SFC). Compared to hardware-based network functions, virtualized network functions are more flexible for deployment. Software defined network (SDN) provides a centralized network architecture to manage network resources and route the network flow among network functions in sequence and virtual machines are leveraged to deploy the network functions as network function virtualization (NFV). However, currently the performance of NFV suffers from I/O latency because packet processing causes lots of interrupts that decreases CPU utilization. To address the I/O latency issue, SR-I/OV network card is designed to replace OpenvSwitch in host machines to reduce the system interrupts. However, SR-I/OV is not compatible with existing SDN system, which is an important component in future 5G networks. Therefore, we propose an integrated architecture called the low latency service function chain from a wider perspective in system design to overcome main defects described above. We modify appropriate components in SR-I/OV driver and OpenvSwitch to dramatically reduce packet processing latency in SFC composed by several VNFs. Moreover, our design is compatible with SDN environment and benefited by central control.

  相似文献   
3.
Biohybrid neural interfaces (BHNIs) are a new class of neuromodulating devices that integrate neural microelectrode arrays (MEAs) and cell transplantation to improve treatment of nerve injuries and disorders. However, current BHNI devices are made from abiotic materials that are usually bio-passive, non-biodisintegratable, or rigid, which restricts encapsulated cell activity and host nerve reconstruction and frequently leads to local tissue inflammation. Herein, the first MEA composed of all disintegratable hydrogel tissue scaffold materials with synergistic performances of tissue conformal adhesiveness, MEA technologies, tissue scaffolding and stem cell therapy on a time scale appropriate for nerve tissue repair is proposed. In particular, the MEA conductive tracks are made from extracellular matrix (ECM)-based double-cross-linked dual-electrically conductive hydrogel (ECH) systems with robust tissue-mimicking chemical/physical properties, electrical conductivity, and an affinity for neural progenitor stem cells. Meanwhile, the MEA hydrogel substrate prepared from transglutaminase-incorporated gelatin/silk precursors simultaneously promotes gelation and interfacial adhesion between all MEA stacks, leading to rapid and scalable device integration. When the full hydrogel MEA is subjected to various mechanical stimuli and moisture, it is structurally stable with a low impedance (4 ± 3 kΩ) comparable to a recently reported benchmark. With seamless lamination around peripheral nerve fibers, the device permits successive neural signal monitoring for wound condition evaluation, while demonstrating synergistic effects of spatiotemporally controlled electrical stimulation and cell transplantation to accelerate restoration of motor function. This BHNI is completely degraded by 1 month thus eliminating the need for surgical retrieval to stably remain, interact, and further fuse with host tissues, successfully exhibiting compatible integration of biology and an implanted electrical system.  相似文献   
4.
Efficient glycerol electrooxidation reaction (GEOR) over gold@nickel sulfide (Au@NiSx) yolk@shell nanostructures is demonstrated, achieving ≈50.4% glycerol conversion at 10 h, 92.6% selectivity toward three-carbon products, and 90.7% total Faradaic efficiency. By regulating the electrode potential, tartronic acid (TART), one of the highest value-added intermediates, can be produced with a selectivity as high as 43.1% and a yield of 45.6 µmol cm−2 h−1. A combination of ex situ microstructural analysis, operando Raman, and operando X-ray absorption measurements reveals a dynamic surface reconstruction course from Au@NiSx to Au@NiSx/NiOOH during the glycerol oxidation process. The unique reconstructed architectures featuring conductive interior NiSx components and active surface high-valence Ni3+ species account for the superior GEOR performance. Further integration of GEOR with hydrogen evolution reaction is realized by employing Au@NiSx as both anode and cathode electrocatalysts in a two-electrode configuration. Concomitantly production of TART and hydrogen fuel is accomplished. This study demonstrates that Au@NiSx not only can convert glycerol to TART with remarkable efficiency and selectivity, but also can produce hydrogen at a moderate level. The findings from this study can facilitate the development of dual-functional electrocatalysts capable of producing high-value products at both the cathode and anode sides.  相似文献   
5.
This paper presents pragmatic techniques for mechatronic design and injection speed control of an ultra high-speed plastic injection molding machine. Practical rules are proposed to select specifications of key mechatronic components in the hydraulic servo system, in order to efficiently construct an industry-level machine. With reasonable assumptions, a mathematical model of the injection speed control system is established and open-loop experimental data are then employed to validate the system model. By the model, a gain-scheduling PI controller and a fuzzy PI controller are presented, compared and then implemented into a digital signal processor (DSP) using standard C programming techniques. Experimental results are conducted to show that the two proposed controllers are capable of achieving satisfactory speed tracking performance. These developed techniques may provide useful references for engineers and practitioners attempting to design pragmatic, low-cost but high-performance ultra high-injection speed controllers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号