首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
工业技术   7篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2014年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
作为一种新型的具有可见光响应的半导体光催化剂,g-C3N4在光催化产氢领域得到了广泛的研究。然而,纯g-C3N4存在可见光响应范围较窄、光生电子-空穴复合率高、量子效率低等问题。针对纯g-C3N4的缺陷,采用简单的水热合成法制备出一种高效纳米晶胶体g-C3N4/α-Fe2O3复合材料。为了检测g-C3N4/α-Fe2O3的光催化产氢性能,将其引入以NaBH4为底液的体系中。结果表明,当Fe质量分数为1%,体系温度为30℃、NaBH4浓度为50 mmol/L时,产氢量为30 mL。利用PL、EIS以及PC等手段对g-C3N4/α-Fe2O3的光电响应能力进行了分析。结果表明,g-C3N4/α-Fe2O3复合材料具有较低的光致发光强度、较高的光电流密度和较小的电荷转移电阻,说明了光生电荷载流子的有效分离和快速转移。另外,Z-scheme电荷转移途径赋予了g-C3N4/α-Fe2O3较强的氧化能力,为光催化裂解NaBH4提供了较大的驱动力。主要意义在于对光催化产氢有一个新认识,为合理设计和构建Z型光催化剂提供参考。  相似文献   
2.
传统的二维氧化石墨烯存在比表面积小、降解效率低、肉眼难以分辨的缺点,本文以改进的Hummers法制备的GO为前驱体,利用模板法,将GO包裹在三维模板聚苯乙烯微球上,去除模板得到三维多孔石墨烯,并以其作为吸附剂对亚甲基蓝进行吸附去除反应,评价吸附剂对亚甲基蓝的降解性能.研究结果表明:三维多孔石墨烯在60 min时,MB降...  相似文献   
3.
本研究将兼具自组装膜和石墨烯两者优点的复合材料作用于基底,讨论了具有特殊电化学性能的自组装膜-石墨烯电化学界面信号检测系统。同时,通过对自组装膜-石墨烯构建的以石墨烯为基础的FET(GFETs)结构特性的分析,发现以自组装膜功能化的石墨烯可以提供有效的方式调控其性质,减少界面的不纯散射及滞后的场效应行为。文章还探讨了自组装膜-石墨烯在染料敏化太阳能电池及p-n结领域中的研究与应用,对有机分子自组装膜-石墨烯复合材料在控制界面电子性质的应用前景进行了展望。  相似文献   
4.
5.
王宇晶  张楠  刘涉江  苗辰  刘秀丽 《化工进展》2022,41(6):3333-3340
热化学清洗法是一种处理含油污泥经济高效的方法。以无害化处理为目标,本文系统分析了热化学清洗含油污泥的效果,并对原油脱附机理进行了初步探讨。结果表明,复配型清洗剂NAS在4%(质量分数)、60℃(温度)、8∶1(液固比)、60min(时间)的清洗条件下,可将固体残油率降低至0.94%,远低于《油气田含油污泥综合利用污染控制要求》(DB 65/T 3998—2017)等多个标准中规定的含油率≤2.0%的要求;脱附等温线模型拟合和热力学参数计算结果表明,油从固体表面的脱附符合Langmuir模型,且为自发吸热过程;结合FTIR及XRD等分析结果可知,热化学清洗法主要除去了含油污泥中原油的轻组分,重组分与固体表面发生化学吸附,成为影响原油脱附的主导因素。  相似文献   
6.
近年来,全球范围因二氧化碳(CO_(2))的过量排放导致的环境问题日益严重,引起世界各国人民的广泛关注。电化学还原CO_(2)转化为清洁能源和高价值化学品,不仅可以有效地缓解CO_(2)导致的温室效应,而且有望为解决能源危机提供重要出路。本文简述了电化学还原CO_(2)的反应原理,对近年报道的一些高选择性的二元金属催化剂进行分类归纳。综述了二元金属材料物质组成、原子配比、微观形貌、颗粒尺寸等物化性质对CO_(2)还原性能的影响规律,并对部分催化剂的选择性增强机理重点分析。最后,讨论了二元金属材料高效选择性电化学还原CO_(2)存在的主要问题和未来可能的研究重点。  相似文献   
7.
近年来,全球范围因二氧化碳(CO2)的过量排放导致的环境问题日益严重,引起世界各国人民的广泛关注。电化学还原CO2转化为清洁能源和高价值化学品,不仅可以有效地缓解CO2导致的温室效应,而且有望为解决能源危机提供重要出路。本文简述了电化学还原CO2的反应原理,对近年报道的一些高选择性的二元金属催化剂进行分类归纳。综述了二元金属材料物质组成、原子配比、微观形貌、颗粒尺寸等物化性质对CO2还原性能的影响规律,并对部分催化剂的选择性增强机理重点分析。最后,讨论了二元金属材料高效选择性电化学还原CO2存在的主要问题和未来可能的研究重点。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号