首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
交通运输   1篇
  2009年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Physical disturbance by disposal of dredged materials in estuarine and coastal waters may result in burial of benthic fauna. Survival rates depend on a variety of factors including the type and amount of disposed materials and the lifestyle of the organisms. Laboratory burial experiments using six common macrobenthic invertebrates from a brackish habitat of the western Baltic Sea were performed to test the organisms' escape reaction to dredged material disposal. Experimental lab-results were then extrapolated to a field situation with corresponding bottom topography and covering layer thicknesses at experimental field disposal study sites. Resulted survival rates were then verified by comparison with results of an earlier field study at the same disposal sites.Our experimental design in the lab included the disposal of two types of dredged material (i.e. ‘till’ and ‘sand/till mixture’) and two covering layer depths (i.e. 10–20 cm and 14–40 cm). All three bivalves Arctica islandica (Linnaeus), Macoma balthica (Linnaeus), Mya arenaria (Linnaeus) and the polychaete Nephtys hombergii (Savigny) successfully burrowed to the surface of a 32–41 cm deposited sediment layer of till or sand/till mixture and restored contact with the overlying water. These high escape potentials could partly be explained by the heterogeneous texture of the till and sand/till mixture with ‘voids’. The polychaete Bylgides (Harmothoe) sarsi (Malmgren) successfully burrowed through a 16 cm covering layer whereas the polychaete Lagis koreni (Malmgren) showed almost no escaping reaction. No general differences in escape behaviour after burial were detected between our test species from the brackish habitat and those reported in the literature for the same species in marine environments. However, a size-dependence in mobility of motile polychaetes and M. arenaria was apparent within our study. In comparison to a thick coverage, thin covering layers (i.e. 15–16 cm and 20 cm) increased the chance of the organisms (N. hombergii and M. arenaria) to reach the sediment surface after burial. This was not observed for the other test species. While crawling upward to the new sediment surfaces burrowing velocities of up to 8 cm d− 1 were observed for the bivalves and up to 20 cm d− 1 for N. hombergii. Between 17 and 79% of the test organisms showed burrowing activity after experimental burial. The survival rate (defined as the ability to regained contact with the sediment surface) ranged from 0 to 33%, depending on species and on burial depth. The organisms reached the sediment surface by burrowing (polychaetes and bivalves) and/or by extending their siphons to the new sediment surface (bivalves). The extrapolation of laboratory survival rates to the two disposal sites was obtained based on the in situ thicknesses of the dredged spoil layers measured by multi-beam echo sounder. This resulted in total average survival rate estimates for the test species of 45 and 43% for the two disposal sites. The results obtained during the laboratory tests and the following extrapolation to the field were verified by the range of results from a previous field study, using grab sampling shortly before and after a disposal event in June 2001. The effect of dredged material disposal on the tested Baltic Sea benthic macrofauna was assessed by extrapolating the verified laboratory results to the field.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号