首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   1篇
数理化   81篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   8篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
排序方式: 共有81条查询结果,搜索用时 109 毫秒
1.
Sohrabi  M. 《Analysis Mathematica》2021,47(2):421-435
Analysis Mathematica - In this paper, we discuss measure theoretic characterizations for Moore-Penrose inverse of Lambert conditional operators, denoted by (MwEMu)?, in some operator classes...  相似文献   
2.
Summary In the present study the effects of addition of iron on the catalytic activity and Si tolerability of Pt/g-Al2O3in the total oxidation of volatile organic compounds were investigated. Preliminary results showed that there is a noticeable improvement effect on Si-tolerance of catalyst, particularly for short term poison exposure. Bulk analysis of deposited silicon on the catalyst surface indicated that both Pt/g-Al2O3and iron-doped pellets had roughly the same silicone uptakes. Deactivation of catalyst was reversible and much faster for iron doped sample. The promoting effects of iron were related to its electronegativity and, to blocking of fewer Pt sites when iron is present at the surface of the catalyst.  相似文献   
3.
In the present work, the cathodic stripping voltammetric methodology using a hanging mercury drop electrode was described for simultaneous determination of lead and zinc in different real samples. The method is based on adsorption of metal ions on mercury electrode using carbidopa as a suitable complexing agent. The potential was scanned to the negative direction and the differential pulse stripping voltammograms were recorded. Optimal conditions were found to be: accumulation time; 70 s, accumulation potential; 50 mV versus Ag/AgCl, scan rate; 40 mV s?1, supporting electrolyte; 0.01 M ammonia buffer at pH 8.5, and concentration of carbidopa; 8.0 μM. The relationship between the peak current versus concentration was linear over the range of 0.1–210 and 0.2–170 nM for lead and zinc, respectively. The detection limits are 0.09 and 0.15 nM for lead and zinc ions respectively. The relative standard deviations at a concentration level of 70 nM of both metal ions are found 1.08 and 1.24% for lead and zinc ions respectively.  相似文献   
4.
In this study,Au nanoparticles/poly 5-[(2-hydroxynaphthalen-l-yl)diazenyl]isophthalic acid film modified glassy carbon electrode(AuNPs/poly(NDI)/GCE) has shown excellent electrocatalytic activity toward the oxidation of adrenaline(ADR),paracetamol(PAC),and tryptophan(Trp).The bare glassy carbon electrode(GCE) fails to separate the oxidation peak potentials of these molecules,while the poly(NDI) film modified electrode can resolve them.Electrochemical impedance spectroscopy(EIS)indicates that the charge transfer resistance of the bare electrode decreases as 5-[(2-hydroxynaphthalen-l-yl)diazenyl]isophthalic acid is electropolymerized on the bare electrode.Furthermore,EIS exhibits enhancement of electron transfer kinetics between analytes and the electrode after electrodeposition of Au nanoparticles.Differential pulse voltammetry results show that the electrocatalytic current increases linearly in the ranges of 0.01-680.0 μmol L~1 for ADR,0.05-498.0 μmol L~1 for PAC,and 3.0-632.0 μmol L~1 for Trp;with detection limits(S/N = 3) of 0.009 μmol L~1,0.005 μmol L~1,and 0.09 μmol L~1 for ADR,PAC,and Trp,respectively.The proposed method has been successfully applied for simultaneous determination of ADR,PAC,and Trp in biological samples.  相似文献   
5.
We describe a novel magnetic metal-organic framework (MOF) for the preconcentration of Cd(II) and Pb(II) ions. The MOF was prepared from the Fe3O4-pyridine conjugate and the copper(II) complex of trimesic acid. The MOF was characterized by IR spectroscopy, elemental analysis, SEM and XRD. A Box-Behnken design through response surface methodology and experimental design was used to identify the optimal parameters for preconcentration. Extraction time, amount of magnetic MOF and pH value were found to be critical factors for uptake, while type, volume, concentration of eluent, and elution time are critical in the elution step. The ions were then determined by FAAS. The limits of detection are 0.2 and 1.1 μg?L?1 for Cd(II), and Pb(II) ions, respectively, relative standard deviations are <4.5% (for five replicates at 50 μg?L?1 of Cd(II) and Pb(II) ions), and the enrichment capacity of the MOF is at around 190 mg?g?1 for both ions which is higher than the conventional Fe3O4-pyridine material. The magnetic MOF was successfully applied to the rapid extraction of trace quantities of Cd(II) and Pb(II) ions in fish, sediment, and water samples.
Figure
Schematic illustration of synthesized magnetic MOF-pyridine nanocomposite  相似文献   
6.
Global efforts for engineering desired materials which are able to treat the water sources still are ongoing in the bench level methods. Considering adsorbent and photocatalytic materials as the main reliable candidates still are encountering with struggles because of many challenges that restrict their large-scale application. This review comprehensively considered the recent advanced materials water treatment methods which involve to magnetic, activated carbon, carbon nanotubes (CNTs), graphene (G), graphene oxide (GO), (Graphene) quantum dots, carbon nanorods, carbon nano-onions, and reduced graphene oxide (RGO), zeolite, silica and clay-based nanomaterials. The adsorption and photocatalytic properties of these nanomaterials introduced them as highly potent option for heavy metal ions and organic dyes removal and photocatalytic degradation. High specific surface area in conjugation with presenting higher kinetics of adsorption and decomposition are the main characteristics of these materials which make them appropriate to treat wastewater even in ultralow concentration of the pollutants. Considering the mechanistic aspects of the adsorption and photocatalytic decomposition process, challenges and opportunities were other subjects that have been highlighted for the discussed nanomaterials. In term of the adsorption approaches, the mechanism of adsorptions and their influence on the maximum adsorption capacity were discussed and also for photocatalyst approach the radical active spices and their role in kinetic and efficiency of the organic pollutant decomposition were provided a deep discussion.  相似文献   
7.
Photoneutron contaminations in and out of high energy X-ray beams of the medical linear accelerator SATURNE 20 (CGR) of the Radiotherapy Department of Omeed Hospital in Isfahan, Iran, have been determined using 250 μm polycarbonate (PC) dosimeters, in strips or in sheets, processed by electrochemical etching (ECE) using specially designed ECE chambers to etch larger sheets. A two dimensional or topographical distribution of neutron contamination was also determined in a full size beam. The neutron dose equivalents (Hn) in the beam of 18 MV X-rays at 80 cm FSD were determined to be linear functions of X-ray dose equivalents (Hx) up to 1400 cSv. The distribution of the Hn at different X-ray doses showed bell-shape profiles with maxima at the isocenter. The ratios of dose equivalents of neutrons to those of X-rays increased as the field size increased having values of 0.22%, 0.28%, 0.31% and 0.37% for field sizes of 10×10, 20×20, 30×30, and 40×40 cm2 respectively. Although such neutron dose equivalents can be corrected for patient treatment, it can cause radiation protection problems for workers where the design of the facility is not well planned.  相似文献   
8.
9.
10.
A novel type of porous metal-organic framework (MOF) was obtained from thiol-modified silica nanoparticles and the copper(II) complex of trimesic acid. It is shown that this nanocomposite is well suitable for the preconcentration of Hg(II) ions. The nanocomposite was characterized by Fourier transfer infrared spectroscopy, X-ray powder diffraction, energy-dispersive X-ray diffraction and scanning electron microscopy. The effects of pH value, sorption time, elution time, the volume and concentration of eluent were investigated. Equilibrium isotherms were studied, and four models were applied to analyze the equilibrium adsorption data. The results revealed that the adsorption process obeyed the Langmuir model. The maximum monolayer capacity and the Langmuir constant are 210 mg g?1 and 0.273 L mg?1, respectively. The new MOF-based nanocomposite is shown to be an efficient and selective sorbent for Hg(II). Under the optimal conditions, the limit of detection is 20 pg mL?1 of Hg(II), and the relative standard deviation is <7.2 % (for n?=?3). The sorbent was successfully applied to the rapid extraction of Hg(II) ions from fish, sediment, and water samples.
Figure
Schematic illustration of Hg(II) sorption onto SH@SiO2/MOF nanocomposite.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号