首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   3篇
数理化   32篇
  2020年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1975年   2篇
  1974年   3篇
排序方式: 共有32条查询结果,搜索用时 109 毫秒
1.
Dehydrogenation of alcohols into aldehydes and ketones by Ru3(CO)12/PPh3 based homogeneous catalysis has been investigated as an alternative for the classical Oppenauer oxidation. Several catalytic systems have been screened in the Oppenauer-like oxidation of alcohols. A systematic study of various combinations of Ru3(CO)12, mono- and bidentate ligands and hydride acceptors was performed to enable dehydrogenation of primary alcohols to stop at the aldehyde stage. Among many H-acceptors screened, diphenylacetylene (tolane) proved the most suitable judged from its smooth reduction. Electron rich and deficient analogues of tolane have been synthesized and, based on competition experiments between these H-acceptors, a tentative catalytic cycle for the Ru3(CO)12/PPh3-catalyzed dehydrogenations has been proposed.  相似文献   
2.
3.
4.
5.
We study the response of a MEMS resonator, driven in an in-plane length-extensional mode of excitation. It is observed that the amplitude of the resulting vibration has an upper bound, i.e., the response shows saturation. We present a model for this phenomenon, incorporating interaction with a bending mode. We show that this model accurately describes the observed phenomena. The in-plane (“trivial”) mode is shown to be stable up to a critical value of the amplitude of the excitation. At this value, a new “bending” branch of solutions bifurcates. For appropriate values of the parameters, a subsequent Hopf bifurcation causes a beating phenomenon, in accordance with experimental observations.  相似文献   
6.
7.
We study a combustion-radiation model which models premixed flames propagating in a gaseous mixture with inert dust. This model combines diffusion of mass and temperature with reaction at the flame front. We choose a free boundary model to describe the propagating flames and take a linearized approximation to model the radiation, but we keep a nonlinear reaction term which is temperature dependent. The radiative transfer of thermal energy emitted and absorbed by dust is modelled using the Eddington equation. We analyse the bifurcation diagram of the travelling wave solution curve. In a specific parameter plane, travelling waves are given by a single smooth curve which is parameterized by the flame temperature.  相似文献   
8.
New routes for the preparation of highly active TiO(2)-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, (63)Cu nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO(2) catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO(2) at 120 °C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO(2) at 140 °C, corresponding to an initial reaction rate of 104 mmol g(cat) (-1) s(-1). The activation energy on the Cu/mesoporous TiO(2) catalyst was found to be (144±5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123±3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO(2) support (75±2 kJ mol(-1)).  相似文献   
9.
Summary: Microwave irradiation was used for the amidation of a nitrile with an amine with a freshly prepared zirconium-based heterogeneous catalyst. Microwave irradiation selectively heats the catalyst which enhances its activity as compared to conventional heating. The difference between microwave heating and conventional heating disappears when Zr(OH)4 is used instead of ZrO2, indicating a microwave-induced shift in the hydrolysis equilibrium, i.e. the distribution of ZrO2, ZrO(OH)2 and Zr(OH)4, of the zirconium-based catalyst. The catalyst efficiently catalyzes the amidation of valeronitrile with n-hexylamine with conventional as well as with microwave heating. Zr(OH)4 was also used for the polymerization of 6-aminocapronitrile using conventional and microwave heating. With both heating methods a relatively low molecular weight polymer with a Mn of 4000 g/mol was obtained in a sealed vessel, due to the presence of water and ammonia. A post-polymerization step under microwave irradiation, with active removal of water and ammonia shifts Mn to 10000 g/mol. Pressure decrease to facilitate water removal resulted in products with higher molecular weights. A pressure reduction to 50 Pa and operation in an argon atmosphere at 230 °C resulted in nylon-6 with a Mn of 65000 in rather short reaction times. Lower pressures led to end-biting and evaporation of the volatile ε-caprolactam at 230 °C. As a consequence the resulting product has than a much lower molecular weight. The combination of a heterogeneous zirconium based catalyst and microwave heating is promising for process intensification for nylon-6 production.  相似文献   
10.
The action of nanoparticulate copper catalysts with a mean particle size of 10 nm in the Ullmann ether synthesis is reported using multimode microwave heating and employing stable chloropyridine salts and unactivated phenol, with stabilized copper nanoparticles outperforming other copper catalysts in terms of stability and reusability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号