首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   4篇
工业技术   105篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   9篇
  2012年   11篇
  2011年   13篇
  2010年   4篇
  2009年   9篇
  2008年   4篇
  2007年   10篇
  2006年   7篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1991年   1篇
  1976年   1篇
排序方式: 共有105条查询结果,搜索用时 78 毫秒
1.
The article investigates the finite sample properties of estimators for spatial autoregressive models where the disturbance terms may follow a spatial autoregressive process. In particular we investigate the finite sample behavior of the feasible generalized spatial two-stage least squares (FGS2SLS) estimator introduced by Kelejian and Prucha (1998), the maximum likelihood (ML) estimator, as well as that of several other estimators. We find that the FGS2SLS estimator is virtually as efficient as the ML estimator. This is important because the ML estimator is computationally burdensome, and may even be forbidding in large samples, while the FGS2SLS estimator remains computationally feasible in large samples. Received: 20 January 2001 / Accepted: 31 August 2001  相似文献   
2.
Application of a two-phase slug flow in side-stream membrane bioreactors (MBRs) has proven to increase the permeate flux and decrease fouling through a better control of the cake layer. Past literature has shown that the hydrodynamics near the membrane surface have an impact on the degree of fouling by imposing high shear stress near the surface of the membrane. Previously, shear stress histograms (SSH) have been introduced to summarize results from an experimental setup developed to investigate the shear stress imposed on the surface of a membrane under different two-phase flow conditions (gas and liquid) by varying the flow of each phase. Bimodal SSHs were observed, with peaks corresponding to the shear induced by the liquid and gas flow respectively. In this contribution, SSHs are modelled using simple empirical relationships. These are used to identify the two-phase flow conditions that optimize fouling control. Furthermore, the total energy consumption of the system was estimated based on the two-phase pressure drop. It was found that low liquid and high gas flow rates (ratio of approx. 4) balanced the peaks and minimized the energy consumption.  相似文献   
3.
4.
Techniques for high-speed delay scanning are important for low-coherence interferometry, optical coherence tomography, pump probe measurements, and other applications. We demonstrate a novel scanning delay line using a multiple-pass cavity. Differential delays are accumulated with each pass so that millimeter delays can be generated with tens of micrometer mirror displacements. With special design criteria, misalignment sensitivity can be dramatically reduced. The system is demonstrated to scan 6 m/s at 2-kHz repetition rates. Real-time optical coherence tomography imaging with 500 pixel images at four frames/s is performed. Using a Cr:forsterite laser source, we obtained axial image resolutions of 6 microm with 92-dB sensitivity.  相似文献   
5.
Bürger R  Diehl S  Nopens I 《Water research》2011,45(6):2247-2260
The aim of this contribution is partly to build consensus on a consistent modelling methodology (CMM) of complex real processes in wastewater treatment by combining classical concepts with results from applied mathematics, and partly to apply it to the clarification-thickening process in the secondary settling tank. In the CMM, the real process should be approximated by a mathematical model (process model; ordinary or partial differential equation (ODE or PDE)), which in turn is approximated by a simulation model (numerical method) implemented on a computer. These steps have often not been carried out in a correct way. The secondary settling tank was chosen as a case since this is one of the most complex processes in a wastewater treatment plant and simulation models developed decades ago have no guarantee of satisfying fundamental mathematical and physical properties. Nevertheless, such methods are still used in commercial tools to date. This particularly becomes of interest as the state-of-the-art practice is moving towards plant-wide modelling. Then all submodels interact and errors propagate through the model and severely hamper any calibration effort and, hence, the predictive purpose of the model. The CMM is described by applying it first to a simple conversion process in the biological reactor yielding an ODE solver, and then to the solid-liquid separation in the secondary settling tank, yielding a PDE solver. Time has come to incorporate established mathematical techniques into environmental engineering, and wastewater treatment modelling in particular, and to use proven reliable and consistent simulation models.  相似文献   
6.
This paper first reports a data acquisition method that the authors used in a project on modeling driver behavior for microscopic traffic simulations. An advanced instrumented vehicle was employed to collect driver-behavior data, mainly car-following and lane-changing patterns, on Swedish roads. To eliminate the measurement noise in acquired car-following patterns, the Kalman smoothing algorithm was applied to the state-space model of the physical states (acceleration, speed, and position) of both instrumented and tracked vehicles. The denoised driving patterns were used in the analysis of driver properties in the car-following stage. For further modeling of car-following behavior, we developed and implemented a consolidated fuzzy clustering algorithm to classify different car-following regimes from the preprocessed data. The algorithm considers time continuity of collected driver-behavior patterns and can be more reliably applied in the classification of continuous car-following regimes when the classical fuzzy C-means algorithm gives unclear results  相似文献   
7.
The aim of the present study was to develop a computational fluid dynamics (CFD) model to study the effect of slug flow on the surface shear stress in a vertical tubular membrane. The model was validated using: (1) surface shear stresses, measured using an electrochemical shear probe and (2) gas slug (Taylor bubble) rising velocities, measured using a high speed camera. The length of the gas slugs and, therefore, the duration of a shear event, was observed to vary substantially due to the coalescing of gas slugs as they travelled up the tube. However, the magnitude of the peak surface shear stress during a shear event was not observed to vary significantly. The experimental conditions significantly affected the extent to which the gas slugs coalesced. More coalescing between gas slugs was typically observed for the experiments performed with higher gas flow rates and lower liquid flow rates. Therefore, the results imply that the frequency of shear events decreases at higher gas flow rates and lower liquid flow rates.Shear stress histograms (SSH) were used as a simple approach to compare the different experimental conditions investigated. All conditions resulted in bi-modal distributions: a positive surface shear peak, caused by the liquid slug, and a negative shear peak caused by the gas slugs. At high gas flow rates and at low liquid flow rates, the frequency of the shear stresses in both the negative and positive peaks were more evenly distributed. For all cases, increasing the liquid flow rate and decreasing the gas flow rate tends to result in a predominant positive peak. These results are of importance since conditions that promote evenly distributed positive and negative peaks, are likely to promote better fouling control in membrane system. At high liquid and low gas flow rates, the frequencies obtained numerically and experimentally were found to be similar, deviating by less than approximately 10%. However, at high gas and low liquid flow rates, the differences were slightly higher, exceeding 20%. Under these conditions, the CFD model simulations over predicted the shear stresses induced by gas slugs. Nonetheless, the results indicate that the CFD model was able to accurately simulate shear stresses induced by gas slugs for conditions of high liquid and low gas flow rates.  相似文献   
8.
Mathematical modelling has proven to be very useful in process design, operation and optimisation. A recent trend in WWTP modelling is to include the different subunits in so-called plant-wide models rather than focusing on parts of the entire process. One example of a typical plant-wide model is the coupling of an upstream activated sludge plant (including primary settler, and secondary clarifier) to an anaerobic digester for sludge digestion. One of the key challenges when coupling these processes has been the definition of an interface between the well accepted activated sludge model (ASM1) and anaerobic digestion model (ADM1). Current characterisation and interface models have key limitations, the most critical of which is the over-use of Xc (or lumped complex) variable as a main input to the ADM1. Over-use of Xc does not allow for variation of degradability, carbon oxidation state or nitrogen content. In addition, achieving a target influent pH through the proper definition of the ionic system can be difficult. In this paper, we define an interface and characterisation model that maps degradable components directly to carbohydrates, proteins and lipids (and their soluble analogues), as well as organic acids, rather than using Xc. While this interface has been designed for use with the Benchmark Simulation Model No. 2 (BSM2), it is widely applicable to ADM1 input characterisation in general. We have demonstrated the model both hypothetically (BSM2), and practically on a full-scale anaerobic digester treating sewage sludge.  相似文献   
9.
Iron(III) competes with trace metals for binding sites on organic ligands. We used X-ray absorption fine structure (EXAFS) spectroscopy to determine the binding mode and oxidation state of iron in solutions initially containing only iron(III) and fulvic acid at pHs 2 and 4. EXAFS spectra were recorded at different times after sample preparation. Iron was octahedrally configured with inner-sphere Fe-O interactions at 1.98-2.10 A, depending on the oxidation state of iron. Iron(III) formed complexes with fulvic acid within 15 min. Iron(III) was reduced to iron(II) with time at pH 2, whereas no significant reduction occurred at pH 4. No signs of dimeric/trimeric hydrolysis products were found in any of the solution samples (<0.45 microm). However, the isolated precipitate of the pH 2 sample (>0.45 microm) showed Fe...Fe distances, indicating the presence of tightly packed iron(III) trimers and/or clusters of corner-sharing octahedra. It is suggested that the binding mode of iron(III) to fulvic acid at low pH may be phase-dependent: in solution mononuclear complexes predominate, whereas in the solid phase hydrolyzed polynuclear iron(III) complexes form, even at very low pH values. The observed pH dependence of iron(III) reduction was consistent with expected results based on thermodynamic calculations for model ligands.  相似文献   
10.
Electrical Engineering - In this paper, a comprehensive investigation of the capacitive active ripple compensation (ARC) techniques is made to conclude which one is optimal to be used in on-board...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号