首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10253篇
  免费   901篇
  国内免费   98篇
工业技术   11252篇
  2024年   20篇
  2023年   211篇
  2022年   306篇
  2021年   649篇
  2020年   580篇
  2019年   719篇
  2018年   831篇
  2017年   783篇
  2016年   773篇
  2015年   471篇
  2014年   766篇
  2013年   1140篇
  2012年   711篇
  2011年   806篇
  2010年   514篇
  2009年   434篇
  2008年   280篇
  2007年   204篇
  2006年   167篇
  2005年   119篇
  2004年   121篇
  2003年   73篇
  2002年   75篇
  2001年   39篇
  2000年   36篇
  1999年   32篇
  1998年   50篇
  1997年   29篇
  1996年   28篇
  1995年   30篇
  1994年   20篇
  1993年   22篇
  1992年   11篇
  1991年   25篇
  1990年   21篇
  1989年   17篇
  1988年   12篇
  1987年   11篇
  1986年   11篇
  1985年   12篇
  1984年   18篇
  1983年   19篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1975年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Journal of Materials Science - Chitosan is one of the natural cationic polymers with unique properties such as non-toxicity, biodegradability, biocompatibility, environmentally friendly that has...  相似文献   
2.
Wireless Networks - In order to satisfy the delay requirements of telecommunication systems, in this paper, we present a cooperative network with the short packet transmission in the Rayleigh...  相似文献   
3.
Cell temperature and water content of the membrane have a significant effect on the performance of fuel cells. The current-power curve of the fuel cell has a maximum power point (MPP) that is needed to be tracked. This study presents a novel strategy based on a salp swarm algorithm (SSA) for extracting the maximum power of proton-exchange membrane fuel cell (PEMFC). At first, a new formula is derived to estimate the optimal voltage of PEMFC corresponding to MPP. Then the error between the estimated voltage at MPP and the actual terminal voltage of the fuel cell is fed to a proportional-integral-derivative controller (PID). The output of the PID controller tunes the duty cycle of a boost converter to maximize the harvested power from the PEMFC. SSA determines the optimal gains of PID. Sensitivity analysis is performed with the operating fuel cell at different cell temperature and water content of the membrane. The obtained results through the proposed strategy are compared with other programmed approaches of incremental resistance method, Fuzzy-Logic, grey antlion optimizer, wolf optimizer, and mine-blast algorithm. The obtained results demonstrated high reliability and efficiency of the proposed strategy in extracting the maximum power of the PEMFC.  相似文献   
4.
The onset of hybrid alumina-based composites, which combines two or more nano-particles within the alumina matrix has already shown promising improvements in the matrix material. However, variations in mechanical properties including the optimum compositions that give improved properties faced with the development of alumina-based composites require further studies to understand the underlying mechanisms and synergistic effects of the nano-particle additions on the alumina matrix. In the current study, the structure and properties of Al?O?-graphene (0.5 wt%) and Al?O?–ZrO? (4 wt% and 10 wt%) composites fabricated via hot-pressing was studied as a baseline for multiple combinations. Even though the addition of 10 wt%ZrO? resulted in a 23% reduction in the grain size of the alumina matrix, the 4 wt%ZrO? addition resulted in a 14% increase in grain size as compared to the parent alumina matrix. X-ray diffraction analysis revealed that there was approximately 85% monoclinic (m-ZrO2) vs. 15% tetragonal (t-ZrO2) crystal structures in the A4ZrO? sample whilst the A10ZrO? had approximately 93% m-ZrO2 vs. 7% t-ZrO2. The high-volume fraction of the monoclinic crystal structures in the A10ZrO? accounts for the induced microcracks in the sample since the transition from the ductile-tetragonal to brittle-monoclinic is associated with the exertion of compressive stresses on the alumina matrix by the associated elastic volume expansion of m-ZrO2. Also, the addition of 0.5 wt%graphene resulted in about 37% reduction in the grain size of the alumina matrix, and approximately 10% increase in hardness as a result of the distribution of graphene along the grain boundaries of the parent alumina matrix, which restricts grain coalescence and growth during processing. Furthermore, an increase up to 115% and 164% were observed in the fracture toughness (KIC) with the inclusion of 0.5 wt%graphene and 10 wt%ZrO? respectively, which was primarily ascribed to the fine-grained microstructures and toughening mechanisms of the intergranular graphene and ZrO? particles.  相似文献   
5.
Software is a central component in the modern world and vastly affects the environment’s sustainability. The demand for energy and resource requirements is rising when producing hardware and software units. Literature study reveals that many studies focused on green hardware; however, limited efforts were made in the greenness of software products. Green software products are necessary to solve the issues and problems related to the long-term use of software, especially from a sustainability perspective. Without a proper mechanism for measuring the greenness of a particular software product executed in a specific environment, the mentioned benefits will not be attained. Currently, there are not enough works to address this problem, and the green status of software products is uncertain and unsure. This paper aims to identify the green measurements based on sustainable dimensions in a software product. The second objective is to reveal the relationships between the elements and measurements through empirical study. The study is conducted in two phases. The first phase is the theoretical phase, where the main components, measurements and practices that influence the sustainability of a software product are identified. The second phase is the empirical study that involved 103 respondents in Malaysia investigating current practices of green software in the industrial environment and further identifying the main sustainability dimensions and measurements and their impact on achieving green software products. This study has revealed seven green measurements of software product: Productivity, Usability, Cost Reduction, Employee Support, Energy Efficiency, Resource Efficiency and Tool Support. The relationships are statistically significant, with a significance level of less than 0.01 (p = 0.000). Thus, the hypothesised relationships were all accepted. The contributions of this study revolve around the research perspectives of the measurements to attain a green software product.  相似文献   
6.
This research explores mechanical and high velocity impact response of hybrid long carbon/glass fiber-reinforced polypropylene thermoplastic composites (HLFT) with different fiber lengths. The work examines three hybrid long fiber thermoplastic composites, i.e., 5, 10 and 20 mm. The HLFTs were prepared by a combination of extrusion and pultrusion processes and using a cross-head die. Tensile and Izod impact tests were carried out to evaluate the mechanical performance of each HLFT compound. A gas gun with a spherical projectile was used to conduct high velocity impact tests at three velocities of 144, 205 and 240 m/s. The results showed that internal mixing operation caused extensive reduction in fiber length of all three LFT lengths. Tensile strength, modulus and Izod impact test results were the indications of higher values with increase in HLFT length. Comparison of these results for the HLFT with that of corresponding glass/PP LFTs, adopted from earlier work by Shayan Asenjan et al. (J Compos Mater 53:353–360, 2019), showed better performance of HLFT. The high velocity impact results showed a steady higher impact performance with the increase in HFLT fiber length for all impact velocities tested. Comparison of HLFT high velocity impact performance revealed better results for all impact velocities tested with that of the corresponding glass/PP LFT composite.  相似文献   
7.
Abstract

4-[4-(1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl]methylbenzophenone (ITBP) and 4[4-(1H-1,2,4-triazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl]methylbenzophenone (TTBP) are synthesized as new heterocyclic compounds of the triazole derivative family and tested successfully as potential inhibitors for MS in 1?M H2SO4 corrosive medium by using gravimetric analysis, electrochemical impedance spectroscopy, potentiodynamic polarization, and energy dispersive X-ray spectroscopy (EDX). Polarization curves show that the tested inhibitors are mixed-type inhibitors. Scanning electron microscopy (SEM) affirmed the existence of an adsorbed film on the steel surface. Monte Carlo simulations were in excellent agreement with the experimental tests.

Abbreviation: PDP: Potentiodynamic Polarization; EIS: Electrochemical impedance spectroscopy; DFT: Density functional theory; MC: Monte Carlo  相似文献   
8.
In the present study, spinel structure CoFe2O4 nanoparticles were successfully synthesized by the sol-gel auto-combustion technique. The effect of apple cider vinegar (ACV) addition as an organic biocompatible agent on the size, morphology, and magnetic properties of CoFe2O4 nanoparticles was investigated in detail. The phase evolution, particle size, and lattice parameter changes of the synthesized phase have been estimated by using Rietveld structure refinement analysis of X-ray powder diffraction data. Also, Fourier transform infrared spectra (FT-IR) of the samples verified the presence of two expected bands correspond to tetrahedral and octahedral metal-oxygen complexes within the spinel structure. Furthermore, microstructural observations revealed that ultrafine particles have a semi-spherical morphology. It was shown that the particles size decreased from ~45 to ~17 nm with an increase in the amount of ACV. Magnetic properties were carried out by vibrating sample magnetometer (VSM) at room temperature. Both the saturation magnetization (Ms) and coercivity (Hc) were found to be significantly dependent on the crystallite size and the amount of ACV.  相似文献   
9.
2,6-Bis(5-amino-1H-benzimidazol-2-yl)pyridine was prepared and characterized by Fourier transform infrared spectroscopy, elemental analysis, 1H-NMR, and 13C-NMR spectroscopic methods. Then a new poly(benzimidazole-amide) was synthesized by polymerization of the corresponding diamine and isophthalic acid. The obtained poly(benzimidazole-amide) exhibited good yield and high thermal stability. Due to the existence of benzimidazole moieties in polymer’s structure, it has the tendency to form complexes with metal ions. So, a new poly(benzimidazole-amide)/Co nanocomposite was prepared. Morphological studies revealed that metal nanoparticles were dispersed in the polymer matrix without any aggregation. poly(benzimidazole-amide)/Co nanocomposite was used as a catalyst in the oxidation of ethyl benzene to acetophenone with tert-butyl hydroperoxide.  相似文献   
10.
Possessing unique designs and properties absent in conventional materials, nanocomposites have made a remarkable imprint in science and technology. This is particularly true regarding the polymer matrix composites when they are further reinforced with nanoparticles. In this study, the effects of different weight percentages (0, 0.1, 0.2, 0.3, 0.4, and 0.5) of surface-modified graphene nanoplatelets (GNPs) on the microhardness and wear properties of basalt fibers/epoxy composites were investigated. The GNPs were surface modified by silane, and the composites were made by the hand lay-up method. The wear tests were conducted under two different loads of 20 and 40 N. The best wear properties were achieved at 0.3 wt % GNPs as a result of the GNPs' self-lubrication property and the formation of a stable transfer/lubricating film at the pin and disk interface. Moreover, the friction coefficient was lower at the higher normal load of 40 N. The microscopic studies by FESEM and SEM showed that the presence of GNPs up to 0.3 wt % led to the stability of the transfer/lubricating film by enhancing the adhesion of the basalt fibers to the epoxy resin. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47986.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号