首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4327篇
  免费   478篇
  国内免费   17篇
工业技术   4822篇
  2024年   3篇
  2023年   51篇
  2022年   28篇
  2021年   144篇
  2020年   113篇
  2019年   136篇
  2018年   154篇
  2017年   199篇
  2016年   193篇
  2015年   188篇
  2014年   237篇
  2013年   321篇
  2012年   352篇
  2011年   442篇
  2010年   257篇
  2009年   281篇
  2008年   210篇
  2007年   177篇
  2006年   168篇
  2005年   135篇
  2004年   113篇
  2003年   136篇
  2002年   103篇
  2001年   108篇
  2000年   94篇
  1999年   79篇
  1998年   73篇
  1997年   44篇
  1996年   43篇
  1995年   40篇
  1994年   32篇
  1993年   19篇
  1992年   21篇
  1991年   19篇
  1990年   17篇
  1989年   19篇
  1988年   12篇
  1987年   11篇
  1986年   15篇
  1985年   10篇
  1984年   10篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有4822条查询结果,搜索用时 16 毫秒
1.
Thyromimetics, whose physicochemical characteristics are analog to thyroid hormones (THs) and their derivatives, are promising candidates as novel therapeutics for neurodegenerative and metabolic pathologies. In particular, sobetirome (GC-1), one of the initial halogen-free thyromimetics, and newly synthesized IS25 and TG68, with optimized ADME-Tox profile, have recently attracted attention owing to their superior therapeutic benefits, selectivity, and enhanced permeability. Here, we further explored the functional capabilities of these thyromimetics to inhibit transthyretin (TTR) amyloidosis. TTR is a homotetrameric transporter protein for THs, yet it is also responsible for severe amyloid fibril formation, which is facilitated by tetramer dissociation into non-native monomers. By combining nuclear magnetic resonance (NMR) spectroscopy, computational simulation, and biochemical assays, we found that GC-1 and newly designed diphenyl-methane-based thyromimetics, namely IS25 and TG68, are TTR stabilizers and efficient suppressors of TTR aggregation. Based on these observations, we propose the novel potential of thyromimetics as a multi-functional therapeutic molecule for TTR-related pathologies, including neurodegenerative diseases.  相似文献   
2.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
3.
A recent development in tactile technology enables an improvement in the appreciation of the visual arts for people with visual impairment (PVI). The tactile sense, in conjunction with, or a possibly as an alternative to, the auditory sense, would allow PVIs to approach artwork in a more self‐driven and engaging way that would be difficult to achieve with just an auditory stimulus. Tactile colour pictograms (TCPs), which are raised geometric patterns, are ideographic characters that are designed to enable PVIs to identify colours and interpret information by touch. In this article, three TCPs are introduced to code colours in the Munsell colour system. Each colour pattern consists of a basic cell size of 10 mm × 10 mm to represent the patterns consistently in terms of regular shape. Each TCP consists of basic geometric patterns that are combined to create primary, secondary, and tertiary colour pictograms of shapes indicating colour hue, intensity and lightness. Each TCP represents 29 colours including six hues; they were then further expanded to represent 53 colours. Two of them did not increase the cell size, the other increased the cell size 1.5 times for some colours, such as yellow‐orange, yellow, blue, and blue‐purple. Our proposed TCPs use a slightly larger cell size compared to most tactile patterns currently used to indicate colour, but code for more colours. With user experience and identification tests, conducted with 23 visually impaired adults, the effectiveness of the TCPs suggests that they were helpful for the participants.  相似文献   
4.
5.
We demonstrate the structural evolution of polymorphic phases in Al2O3-inserted SrMnO3 ceramics synthesized by solid state reaction. While the 4H-hexagonal phase is predominant in pure SrMnO3 ceramics, a small amount of 6H-hexagonal polymorph is identified in addition to the primary 4H-hexagonal SrMnO3 and the secondary hexagonal SrAl2O4 phases in the as-sintered ceramics, evidenced by x-ray diffraction and subsequent Rietveld refinement analyses. The existence of the 6H-hexagonal SrMnO3 phase is corroborated using Raman spectroscopy. The chemical compositions and electronic structures of the Al2O3-inserted SrMnO3 compounds are also examined using energy dispersive spectroscopy and x-ray photoelectron spectroscopy, respectively. The first-principles calculations reveal that there is no clear difference between the total energies of 4H- and 6H-hexagonal polymorphs regardless of the presence/absence of Sr and oxygen vacancies. Possible origins are discussed with the estimation of actual strain based on the refined lattice parameter of 6H SrMnO3.  相似文献   
6.
To modify the glycan part of glycosides, the gene encoding β‐glycosidase was cloned from Bacteroides thetaiotaomicron VPI‐5482. The cloned gene, bt_1780, was expressed in Escherichia coli MC1061 and the expressed enzyme was purified using Ni‐NTA affinity chromatography. The purified enzyme, BTBG, showed optimal activity at 50 °C and pH 5.5. Interestingly, this enzyme did not have any hydrolysing activity on ordinary β‐linkage–containing substrates such as xylobiose, lactose and cello‐oligosaccharide, but specifically hydrolysed isoflavone glycosides such as daidzin, genistin and glycitin. Compared to a commercial beta glucosidase, BTBG selectively hydrolysed isoflavone glycosides in soybean extract mixture solution. These results suggest that BTBG may be a specialized enzyme for the hydrolysis of glycosides and that the substrate specificity of BTBG is applicable for the bioconversion of isoflavone glycosides in the food industry.  相似文献   
7.
The electrochemical reduction of carbon dioxide (CO2) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.  相似文献   
8.
In this study, a theoretical method for predicting the longitudinal dispersion coefficient is developed based on the transverse velocity distribution in natural streams. Equations of the transverse velocity profile for irregular cross sections of the natural streams are analyzed. Among the velocity profile equations tested in this study, the beta distribution equation, which is a probability density function, is considered to be the most appropriate model for explaining the complex behavior of the transverse velocity structure of irregular natural streams. The new equation for the longitudinal dispersion coefficient that is based on the beta function for the transverse velocity profile is developed. A comparison of the proposed equation with existing equations and the observed longitudinal dispersion coefficient reveals that the proposed equation shows better agreement with the observed data compared to other existing equations.  相似文献   
9.
To determine three‐dimensional fiber orientation states in injection‐molded short‐fiber composites, a confocal laser scanning microscope (CLSM) is used. Since the CLSM optically sections the specimen, more than two images of the cross sections on and below the surface of the composite can be obtained. Three‐dimensional fiber orientation states can be determined by using geometric parameters of fiber images obtained from two parallel cross sections. For experiments, carbon‐fiber‐reinforced polystyrene is examined by the CLSM and geometric parameters of fibers on each cross‐sectional plane are measured by an image analysis. In order to describe fiber orientation states compactly, orientation tensors are determined at different positions of the prepared specimen. Three‐dimensional orientation states are obtained without any difficulty by determining the out‐of‐plane angles utilizing fiber images on two parallel planes acquired by the CLSM. Orientation states are different at different positions and show the shell–core structure along the thickness of the specimen. Fiber orientation tensors are predicted by a numerical analysis and the numerically predicted orientation states show good agreement with measured ones. However, some differences are found at the end of cavity. They may result from the fountain flow effects, which are not considered in the numerical analysis. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 500–509, 2003  相似文献   
10.
The present study introduces a new experimental method to visualize the fouling process of CaCO3. A mini-channel heat exchanger system with a microscopic imaging technique was developed for real-time visualization of the fouling process. The present study discussed how scale started initially, how scale formed thick layers, and how a small crystal grew into a large one, touching the adjacent one. Detail microscopic images of scale crystals and corresponding fouling resistances were obtained over the entire fouling process. The microscopic observation indicated that the fouling process could be divided into three stages: an induction period, a period of uniform generation of nuclei, and a period of uniform growth of scale. Sudden appearance of numerous small nuclei indicated the end of the induction period, a key event before the rapid increase in the fouling resistance. The present experimental method using microscopic images of the wet fouling process provides a valuable insight on the fouling mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号