首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
农业科学   2篇
  2020年   1篇
  2018年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.

Purpose

The purpose of the present study is to evaluate slow-release nitrogen capabilities of soil amendments obtained by modification of humic materials from peat and lignite with alkoxyorganosilanes carrying different amine substituents.

Materials and methods

The humates from lignite and peat were modified using (3-aminopropyltriethoxy)-silane (APTES) and (1-aminohexamethylenene, 6-aminomethylene)-triethoxysilane (AHATES). The obtained derivatives were characterized using elemental analysis and Fourier transform infrared spectroscopy. Nitrogen release in the form of ammonia or nitrate was evaluated using dissolution tests under sterile aqueous conditions as well as long-term soil experiments. Ammonium and nitrate were determined using ion-selective electrodes. Activity index (AI) was calculated from the dissolution tests. For soil trials, arable Retisol was sampled from 0- to 5-cm layer in Yaroslavl region (Russia). The soil experiments were conducted over 78 days using (NH4)2SO4 as an activator of nitrification and 3-amino-1,2,4-triazole as an inhibitor of autotrophic nitrifying bacteria.

Results and discussion

Modification of lignite and peat humates leads to an increase in nitrogen content up to 2 and 4.3 %, respectively, in case of APTES, and up to 3 and 6 %, respectively, in case of AHATES. All humic derivatives gradually released N upon dissolution in water over 6 days up to 51 % of the total N. The AI values ranged from 4 to 13 %. Amendment of soil with the modified humic materials induced an increase in nitrate content resulting from nitrification of released ammonia by soil microflora. This was confirmed by aminotriasole experiments. The nitrogen release occurred slowly: over the first week of incubation, it did not exceed 36–69 % of the total N content. The higher release rate of ammonium nitrogen was observed for CHS-AHATES versus CHS-APTES derivative, whereas no difference was seen between the two peat derivatives, which showed release rate on the level of CHS-AHATES derivative. Positive effect of all modified humic materials lasted over 78 days.

Conclusions

Modification of lignite and peat humates with two aminoorganosilanes carrying one and two nitrogen atoms in the amine substituent brought about twofold to threefold enrichment of the parent humic materials with nitrogen, which was capable of slow release upon incubation in soils. It was released in the form of ammonia and transformed to nitrates by autotrophic nitrifying soil microflora. There was no clear relationship established between structure of amine substituent of organosilane and slow-release properties of the corresponding humic derivatives. The conclusion was met that principal application of aminoorganosilane derivatives of humic substances (HS) is soil structuring, whereas nitrogen-fertilizing capabilities might be considered as beneficial added-value feature of these humic products.
  相似文献   
2.
Eurasian Soil Science - The extractable fractions of organic matter (OM) differing in their mobility—water-extractable organic matter, labile humic substances, and humic substances—have...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号