首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21490篇
  免费   46篇
  国内免费   1篇
农业科学   21537篇
  2023年   11篇
  2022年   29篇
  2021年   34篇
  2020年   45篇
  2019年   37篇
  2018年   3206篇
  2017年   3229篇
  2016年   1369篇
  2015年   125篇
  2014年   52篇
  2013年   70篇
  2012年   998篇
  2011年   2641篇
  2010年   2719篇
  2009年   1925篇
  2008年   1798篇
  2007年   2304篇
  2006年   54篇
  2005年   152篇
  2004年   132篇
  2003年   208篇
  2002年   98篇
  2001年   13篇
  2000年   62篇
  1999年   8篇
  1998年   6篇
  1993年   23篇
  1992年   41篇
  1991年   5篇
  1990年   10篇
  1989年   25篇
  1988年   26篇
  1987年   5篇
  1985年   4篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1977年   18篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1969年   3篇
  1968年   20篇
  1967年   9篇
  1966年   2篇
  1965年   2篇
  1964年   1篇
  1960年   2篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
1.
2.
3.
4.
5.
With three plant pathogens,Botrytis cinerea, Venturia inaequalis and Puccinia graminis f. sp.tritici, the time course of sterol biosynthesis during spore germination was examined by labeling experiments along with the question whether this pathway could be inhibited by triazole fungicides. Conidia ofB. cinerea andV. inaequalis are able to synthesize sterols immediately after the beginning of the germination process when the germ tubes have not yet emerged. On the contrary uredospores ofP. graminis start sterol biosynthesis after 6 to 8 h germination time almost at the end of the germ tube phase, indicating that sterol reserves of the spores are likely to be used for the germ tube growth.The sterol C-14 demethylation appeared to be the rate limiting step within the sterol biosynthetic pathway: the half life of 24-methylenedihydrolanosterol was less than 1 h forB. cinerea. It was more than 1 h forV. inaequalis and 3 h forP. graminis. Independent of these differences in the time course of sterol biosynthesis and in the C-14 demethylation rate, the synthesis of sterols in germinating spores was strongly inhibited by triazole fungicides in all three pathogens examined. In contrast toP. graminis, this inhibition could be demonstrated withB. cinerea andV. inaequalis even in ungerminated conidia, indicating that the fungicides were rapidly taken up and reached their target within 1 or 2 h. These results are discussed along with the question whether spore germination can be used as a bioassay for the estimation of sensitivities of triazole fungicides.  相似文献   
6.
The inherent resistance risk forMonilinia fructicola against sterol-biosynthesis inhibitors (SBIs) was estimated inin vitro andin vivo laboratory studies. Several mutant strains were selected on media amended with the triazole fungicides penconazole, etaconazole or the morpholine fungicide fenpropimorph.The potential forM. fructicola to develop resistance to the triazoles or to the morpholines was similar.The level of resistance attained did not differ for the two classes of fungicides after a single cycle of treatment with nitrosoguanidine (NTG). Attemps to select mutants with a higher level of resistance to penconazole after successive mutagenic treatments were successful. Most of the mutants were less fit than wild-type strains. Mutants with a low level of resistance had an almost normal mycelial growth rate, whereas growth of mutants with a higher level of resistance was significantly reduced. Spore production was highest in the wild-type strains, similar to the latter in a few resistant strains and less in most others. Only one mutant with an intermediate level of resistance could successfully compete in a mixed population with a wild type strain during successive infection cycles on peaches. Resistance was not stable in highly resistant mutants. Cross resistance to the inhibitors of 14-methylsterol demethylation (DMIs) tested was confirmedin vitro andin vivo for all mutant strains. One DMI-resistant mutant was also resistant to fenpropimorph and two fenpropimorph-resistant mutants were resistant to penconazole.  相似文献   
7.
Colonization of rose by powdery mildew (Sphaerotheca pannosa) is described in terms of mycelium growth, conidiophore production and sporulation in time. The data used are gathered during different years, put together and treated by means of graphic models. Colonies could be separated into fast and slow growing colonies. Colonies initiated on leaves of increasing age showed a decreasing growth rate. Production of conidiophores and conidia started on the same day, and the relative activity of conidiophore production reached its maximum 6 days after the end of the latency period, followed 1 day later by the maximum activity of conidium production. Both conidiophore and conidium production continued for a long time at a low level. The effect of leaf age on conidiophore production found expression in differences in production rate during the first days of colony development and in final production levels. Observations on naturally infected leaves in an outdoor experiment showed a rapid decrease of sporulation on leaves of 10 days and older. Highest percentages of sporulating leaf area were observed on leaves between 7 and 10 days old.  相似文献   
8.
Samples of heavily infested crop residues were incorporated in static compost heaps (2.5–4.6 m3) of the Indore type. Temperature increased to 50–70°C within 6 days depending on the type of crop residues used and the location within the heap. The heat phase (>40 °C) lasted 2–3 weeks and was followed by a c. 5-months maturation phase (<40 °C). Among the 17 pathogens tested, onlyOlpidium brassicae and one of the four formae speciales ofFusarium oxysporum that were tested survived composting, but also their inoculum was greatly reduced.Survival during specific phases of composting was studied by incorporation and retrieval of samples at various stages of the process.F. oxysporum f. sp.melonis was completely inactivated andO. brassicae andPlasmodiophora brassicae were almost completely inactivated during the short heat phase. The three pathogens survived the long-lasting maturation phase without loss of viability. Heat evolved during composting was found to be the most important factor involved with sanitation of crop residues. The possible involvement of fungitoxic conversion products and microbial antagonism is discussed.  相似文献   
9.
1. A pause in egg production was induced in brown‐egg laying hens, aged 68 weeks, by feeding them whole oats for 7 d. Subsequently, these hens, together with control groups, were given laying diets with either 400 or 600 mg/kg iron. The 200 mg/kg of supplemental iron was added in the form of either ferrous sulphate or iron proteinate (chelated iron).

2. The feeding of whole oats halted egg production in 5.7 ±0.22 d and the duration of the pause was 8.3 ±0.78 d.

3. The induction of a pause improved the subsequent rate of egg production, egg output, efficiency of food utilisation, albumen quality, egg specific gravity and shell colour. It also increased food intake and body weight gain but neither egg weight nor the rate of mortality were affected.

4. Neither supplementation of the diet with iron nor its source had any significant effect on laying performance, egg quality or shell colour.  相似文献   

10.
Replant disease is a common phenomenon in asparagus growing in the Netherlands. It is distinct from the decline phenomenon reported from many other asparagus producing area’s. The involvement of autotoxins from root residues of former asparagus crops was evaluated. Residues of aspar agus roots decompose extremely slowly. At two locations, each with fields where asparagus production was terminated 1 and 10 years before, biomass of root residues was 4180 and 11060 kg dw ha?1 after 1 year and 420 and 1140 kg dw ha?1 after 10 years.Although 10-year-old residues were for the greater part decomposed, crude aqueous extracts inhibited root growth of asparagus seedlings significantly and even more of garden cress. In root observation boxes with field soil mixed with non-sterilized or sterilized asparagus root fragments, growth of secondary roots was inhibited. Non-sterilized strawberry roots did not inhibit root growth, suggesting that effects of organic matter were not involved. In a pot experiment, sterilized asparagus root fragments inhibited root growth when added at a rate of 20 g1?1, but not a 2 g1?1 Addition of non-sterilized root fragments strongly inhibited root growth at both levels. This was probably due to simultaneous infection byFusarium oxysporum present in these residues. When an asparagus field is replanted, the amount of root residues left behind in soil after termination of the crop in the previous season is about 2 g dw 1?1, that corresponds to approx. 11000 kg dw ha?1. This level is too low for considering direct growth inhibition by autotoxins as a major factor. Their possible indirect effects are briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号