首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
工业技术   4篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
以假槟榔花为原料, 经高温碳化和氢氧化钾活化制备得到假槟榔花基多孔炭材料。采用XRD、SEM、热重分析仪、比表面积及孔径分析仪等对多孔炭材料进行表征和分析, 用电化学工作站和恒流充放电测试仪测试其电化学性能。结果表明, 假槟榔花基多孔炭材料为无定形炭材料, 为纳米片层结构, 比表面积为1 223.32 m2/g。三电极体系中, 以1 mol/L H2SO4和6 mol/L KOH为电解液, 电流密度为0.5 A/g时, 其放电比电容分别为145 F/g和105 F/g; 20 A/g电流密度下, 放电比电容分别为100 F/g和80 F/g。二电极体系中, 在酸和碱条件下, 1 A/g电流密度下循环5 000圈, 其电容保持率均在98%以上。该材料具有高的比表面积和纳米片层结构, 有利于提高材料的电荷储存能力, 材料具有良好的超级电容器特性。  相似文献   
2.
以溶胶-凝胶法制备了不同质量百分比的NiFe2O4@LiMn2O4复合正极材料。采用X射线衍射、扫描电子显微镜、透射电子显微镜和电化学性能测试等手段, 对NiFe2O4@LiMn2O4材料的结构、形貌和电化学性能进行表征。结果表明, NiFe2O4的包覆并没有改变锰酸锂材料的晶体结构;锰酸锂颗粒表面没有观察到NiFe2O4材料存在。当NiFe2O4包覆量为1%时, 复合材料具有较好的电化学性能, 其首次充放电效率、循环性能和倍率性能都得到了一定程度的提高, 此时NiFe2O4呈薄膜型包覆在锰酸锂颗粒的表面, 厚度约为14 nm, 首次放电比容量(0.1C)为121.2 mAh/g, 10C倍率放电条件下放电比容量为84.8 mAh/g, 1C循环400周后容量保持率为90.64%。  相似文献   
3.
采用浓硫酸浸出废旧石墨(SG)中的金属和杂质,得到硫酸处理后的石墨(ALG),加入铁源制备Fe3O4@Fe/ALG高性能锂离子电池复合负极材料.扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察到,Fe3O4@Fe/ALG复合材料中,纳米级Fe3O4和金属Fe颗粒均匀分散在石墨片中,纳米Fe颗粒提高了复合材料导电性且对石墨的活性有催化作用.X射线光电子能谱(XPS)检测到Fe3O4@Fe/ALG复合材料有羧基(C(O)O)基团存在,该基团可以阻止溶剂分子的共嵌入,以提高材料与电解液的润湿性,从而减少界面阻抗,首次嵌锂时转变为羧酸盐和-Oli基团,形成稳定的固体电解质膜.电化学性能测试结果表明,Fe3O4@Fe/ALG复合材料在0.1 C下循环100圈后,放电比容量为590 mAh/g;0.5 C下循环300圈,放电比容量为497.6 mAh/g,表现出较高的容量和较好的循环性能.该方法不仅为废旧锂离子电池中负极石墨的回收再利用提供了一个新的思路,而且回收再利用的工艺简单、制备的氧化铁基复合材料性能较好,有利于实现工业化生产和实际应用.  相似文献   
4.
高温固相法再生废旧磷酸铁锂电池正极材料   总被引:1,自引:1,他引:0  
通过强碱溶液浸泡过程分离废旧磷酸铁锂(LiFePO4)电池中的正极材料与铝箔集流体,经过热处理、砂磨混合和高温焙烧实现了LiFePO4的再生利用。采用XRD、SEM对再生样品的物相和形貌进行表征,结果表明,再生LiFePO4材料颗粒分布在纳米尺度下,粒径分布均匀,无团聚现象。电化学性能测试结果表明,在0.1C和5C电流密度下,再生LiFePO4放电比容量分别为165.2 和101.5 mAh/g; 在1C倍率下循环100次后,材料容量为150.1 mAh/g,保持率为97.85%,表现出较好的倍率和循环性能。该再生工艺简单、合成的材料电化学性能良好,为加快废旧磷酸铁锂电池回收和再生提供了新的借鉴。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号