首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   4篇
工业技术   20篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
简单介绍水泥搅拌桩加固地基的基本原理和优点;从长沙市某工程O3 59.19至O4 54.86段取土进行室内试验:通过试验数据,分析了影响水泥加固土无侧限抗压强度的一些主要因素。  相似文献   
2.
铁路路基承受的列车动荷载作用由列车通过时产生的周期性振动和无列车通过时的加载间歇组成, 针对此工程背景,开展不同围压、水的质量分数、动应力条件下的连续加载与加载-停振的动三轴试验,研究间歇性循环荷载作用下细粒土的超孔隙水压力、弹性应变、回弹模量和累积塑性应变的变化规律. 试验结果表明,加载间歇对路基变形特性有显著影响. 由于加载间歇阶段试样卸载以及排水作用,试样在加载阶段积累的超孔隙水压力在间歇阶段消散,土体内部颗粒及结构得到调整,试样抵抗后续荷载的能力得到提高. 此外,加载间歇显著减缓了后续加载阶段的塑性应变发展,降低了试样的累积塑性应变. 加载间歇对提高试样回弹模量、降低弹性应变的效果有限. 加载-停振的间歇加载方式可以更准确地模拟实际列车荷载作用,进而获得更具实际意义的试验结果.  相似文献   
3.
<正>《岩土工程学报》2008年第9期刊登了博士生郑英杰等撰写的"由O-cell试桩结果确定整桩的性能"一文(以下简称为原文),文章采用数值模拟分析方法将O-cell试桩结果转换为常规竖向试桩结果,为完善O-cell测桩技术提供了一种理论计算方法,但文章有些问题值得商榷,冒犯之处敬请见谅。现提出予以讨论。  相似文献   
4.
水对路基土的力学性能影响显著,但迄今对路基土含水率变化的长期跟踪测试的有效案例与研究不多.选用可靠的传感器和准确的标定是准确测试含水率变化的基础.首先介绍了EC-5土壤水分传感器测定土体含水量原理,提出了路基土水分传感器室内标定方法,然后利用某既有重载铁路路基土对EC-5土壤水分传感器进行了室内标定试验,研究了干密度和温度对EC-5土壤水分传感器测试结果的影响,建立了考虑干密度影响的含水率标定公式.结果表明,EC-5土壤水分传感器输出电压值与烘干法测定的质量含水量相关性很好,可以准确地测定路基土含水量;干密度变化对EC-5土壤水分传感器测量结果的影响较大,表现为输出电压值随着干密度的增大而增大;在0℃以上时可以不考虑外界环境温度对EC-5土壤水分传感器测量结果的影响.  相似文献   
5.
基于弹性理论,推导了新型预应力路基内水平向附加应力计算公式,并获得了预应力自坡面向路堤内的扩散规律;同时运用ABAQUS有限元软件建立三维预应力路基模型,分析了不同侧压板布设位置下路堤内的水平向附加应力分布情况。研究表明:①理论公式的适用条件为侧压板上边界距路肩距离不小于2.0 m;②板覆盖区(除板左下角点外)路基内水平向附加应力系数及其衰减速率随距路堤坡面水平距离的增加逐渐减小,且水平向附加应力逐步由"腹鼓形"差异分布过渡呈"腹平状"较均匀分布;③距侧压板距离大于0.1 m时,附加应力系数随水平距离增加先增大后减小,且扩散峰值点距坡面水平距离随外延距离的增加而增大;④通过合理布置板间距,可在路堤受荷核心区外部形成一道连续、稳定、有效的受压加固区,进而改善路堤土体受力状态,提高路堤整体服役性能。研究成果可为预应力路基的设计计算和推广应用提供理论基础和参考。  相似文献   
6.
针对高速铁路无砟轨道出现的路基翻浆病害,构建了足尺的轨道路基翻浆模型试验系统,量测了路基翻浆发生过程中路基的含水率、基质吸力和超孔隙水压力,分析了高速列车动荷载作用下路基动水压力的变化规律,并探讨了高速铁路无砟轨道路基翻浆的机理和影响因素.结果表明:无砟轨道基床表层在雨水入渗条件下基本处于饱和状态,在列车动荷载的长期作用下,易发生翻浆病害;超孔隙水压力的显著增大导致路基发生翻浆,翻浆区域内超孔隙水压力的增量沿基床表层深度方向上保持不变;饱和状态下,底座板两侧路基的超孔隙水压力较路基中心线下更高,更易发生翻浆.降低路基含水率或孔隙水压力可有效地防止和抑制路基翻浆的发生.  相似文献   
7.
The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis, and the corresponding loading function was presented. One-dimensional consolidation equation of elastic multilayered soils was then established with single drainage or double drainages under multilevel loading. Moreover, the formulas for calculating effective stress and settlement were derived from the Laplace numerical inversion transform. The three-dimensional composite analysis method of bridge pile group was improved, where the actual load conditions of pile foundation could be simulated, and the consolidation characteristics of soil layers beneath pile were also taken into account. Eventually, a corresponding program named LTPGS was developed to improve the calculation efficiency. The comparison between long-term settlement obtained from the proposed method and the in-situ measurements of pile foundation was illustrated, and a close agreement is obtained. The error between computed and measured results is less than 1 mm, and it gradually reduces with time. It is shown that the proposed method can effectively simulate the long-term settlement of pile foundation and program LTPGS can provide a reliable estimation.  相似文献   
8.
软基台后路基填土对桥台桩基侧向影响的试验研究   总被引:10,自引:0,他引:10       下载免费PDF全文
基于现场测试试验,获得了台后路基填筑前后桥台桩基应力变化的第一手资料;根据测试结果求出了基桩在台后填土前后基桩的弯矩。结果表明,在过渡段填筑之前,远处路基填土已在桩身产生了弯矩;在过渡段填筑期间,基桩弯矩随填土高度的增加而增加;过渡段路基填筑完毕,基桩弯矩也停止了增长。所得结论有助于进一步认识台后填土对桥台桩基侧向影响规律。  相似文献   
9.
东江大桥嵌岩桩承载性能试验研究   总被引:2,自引:0,他引:2  
报道了东莞东江大桥两根大直径嵌岩桩桩基承载力试验,探讨了嵌岩桩荷载传递规律,分析了桩端阻力和桩侧摩阻力随荷载的变化规律和桩底注浆对桩端附近侧阻力和端阻力的影响,得到了桩端附近侧摩阻力与相对位移的关系。结果表明,两桩桩底存在沉碴,Q–s曲线呈双折线型;桩端压浆对提高嵌岩桩的极限承载力效果显著,对减小桩基沉降有作用,不是明显;桩端附近侧摩阻力与相对位移的关系为加工软化型或抛物线型,桩底注浆对侧摩阻力与相对位移的关系有影响。  相似文献   
10.
高速列车荷载作用下路基动应力的大小直接影响到路基沉降变形及长期动力稳定性,现很多高铁线路路基动力响应数据仍处于“信息孤岛”状态,信息共享不充分和综合再分析不够,较难获得更具普遍意义和价值的路基动应力响应规律。鉴于此,采用现场实测、调研收集和数理统计分析的方法研究高速列车荷载作用下路基面动应力大小及概率分布规律,探讨《高速铁路设计规范》中路基面设计动应力幅值计算公式的适应性,并提出高铁路基面设计动应力幅值的计算公式。主要结论如下:①高铁无砟、有砟轨道路基面动应力幅值均服从正态分布,并统计获得了其特征值(均值μ、标准差δ,“3δ规则”的上下限值);②路基面动应力幅值与列车速度的关系:对于高铁无砟轨道,当v≥150km/h,路基面动应力幅值基本保持不变;当v≥150km/h时,动应力幅值随速度线性增加。对于高铁有砟轨道,动应力幅值随速度增大而线性增加。高速无砟、有砟轨道路基面动应力幅值的速度影响系数α分别为0.0015和0.0012;高铁无砟铁路轴重系数β=0.074,约为普通和高速有砟铁路β值的1/3~1/2;③提出高铁无砟、有砟轨道路基面设计动应力幅值计算公式分别为σdl=0.119P,v<150km/h,σdl=0.119P[(1+0.0015(v-150)],v≥150km/h(无砟)和σdl=0.27P(1+0.0012v) (有砟)。研究成果可为高铁路基设计参数取值提供参考及其设计动应力幅值计算公式的修订提供依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号