首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
工业技术   26篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2011年   1篇
  2010年   4篇
  2008年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
The aim of this study is to investigate the effect of thermomechanical treatment on the superelastic behavior of a Ti-50.5 at.%Ni wire in terms of loading/unloading plateau, mechanical hysteresis, and permanent set to optimize these parameters for orthodontic applications. A new three-point bending fixture, oral cavity configuration three-point bending (OCTPB) test, was utilized to determine the superelastic property in clinical condition, and therefore, the tests were carried out at 37 °C. The results indicate that the thermomechanical treatment is crucial for thermal transformation and mechanically induced transformation characteristics of the wire. Annealing of thermomechanically treated specimens at 300 and 400 °C for 1/2 and 1 h leads to good superelasticity for orthodontic applications. However, the best superelasticity at body temperature is obtained after annealing at 300 °C for 1/2 h with regard to low and constant unloading force and minimum permanent set.  相似文献   
3.
This study was conducted to investigate the effect of titanium addition on the microstructure and properties of an equitaomic CoCrFeNiMn high-entropy alloy. Homogenized microstructures of CoCrFeNiMnTix (x = 0.1 and 0.3) alloys consist of face-centered cubic phase; however, addition of more titanium led to formation of a (chromium, titanium)-rich σ phase in CoCrFeNiMnTi0.4 alloy. The average electron hole number calculations indicate the higher possibility of σ phase formation by adding more titanium. Furthermore, addition of an atom like titanium with a larger atomic radius in comparison with other elements can affect stability of face-centered cubic structure. Chromium and manganese has a destabilizing influence on the single face-centered cubic phase and manganese may reject chromium to facilitate the formation of a (chromium, titanium)-rich phase in alloys containing more than 5.5 at.% titanium (x>0.3). The mechanical properties revealed an improvement in strength without losing the ductility drastically by adding titanium up to 5.5 at.% (x = 0.3). Nevertheless, the strength remarkably increased and ductility significantly decreased in CoCrFeNiMnTi0.4 alloy due to formation of brittle σ phase in the microstructure.  相似文献   
4.
The stability of reversely formed austenite and related mechanism of transformation were investigated against temperature and time in an Fe-9.6Ni-7.1Mn (at. pct) martensitic steel during intercritical annealing at a dual-phase (α + γ) region. Dilatometry, electron backscattering diffraction (EBSD), atom probe tomography (APT), and X-ray diffraction (XRD) were used to characterize the mechanism of reverse transformation. It was found that under intercritical annealing at 853 K (580 °C), when the heating rate is 20 K/s (20 °C/s), reverse transformation takes place through a mixed diffusion control mechanism, i.e., controlled by bulk diffusion and diffusion along the interface, where Ni controls the diffusion as its diffusivity is lower than that of Mn in the martensite and austenite. Increasing the intercritical annealing to 873 K (600 °C) at an identical heating rate of 20 K/s (20 °C/s) showed that reverse transformation occurs through a sequential combination of both martensitic and diffusional mechanisms. The transition temperature from diffusional to martensitic transformation was obtained close to 858 K (585 °C). Experimental results revealed that the austenite formed by the diffusional mechanism at 853 K (580 °C) mainly remains untransformed after cooling to ambient temperature due to the enrichment with Ni and Mn. It was also found that the stability of the reversely formed austenite by martensitic mechanism at 873 K (600 °C) is related to grain refinement.  相似文献   
5.
In this research, the parameters affecting the Nusselt number of a generator rotor and stator under varying heat transfer rate are experimentally studied. In spite of the stator having no grooves, the rotor has four large triangular grooves. The temperature and then heat transfer rate of the rotor and stator are experimentally measured in three longitudinal and two angular positions. First, the effect of axial Reynolds number and rotor rotational speed on the rotor and stator Nusselt number with constant heat transfer rate ratio is studied. The range of the axial Reynolds number and rotational speed used is from 4000 to 30,000 and from 300 to 1500 rpm, respectively. Next, the effect of stator to rotor heat transfer rate ratio on the Nusselt number at constant axial Reynolds number and rotational speed is investigated. Three experiments were conducted at three heat transfer rate ratios (3, 5, and 8), defined as the ratio of heat transfer rate of the stator to the rotor. The results show that the higher the heat transfer rate ratio, the lower is the stator mean Nusselt number and the higher the rotor mean Nusselt number.  相似文献   
6.
Journal of Mechanical Science and Technology - {tiThis study examines the effect of nature-inspired leading edge 3D serration on the aerodynamic performance of a 65/35-degree double delta wing....  相似文献   
7.
Severe cold-rolling was applied on solution annealed Fe-Ni-Mn steel with fully lath martensite structure to obtain ultrafine-grained structure. Field emission scanning electron microscopy and high resolution transmission electron microscopy (HRTEM) were employed to investigate the microstructural evolution after severe cold-rolling. HRTEM images showed the typical deformed structure consisting of lamellar dislocation cell blocks. HRTEM study also revealed strain-induced reverse martensitic transformation (activated during grain refinement). It was assumed that severe plastic deformation route and related deformation mode were responsible for microstructural evolutions. X-ray diffraction (XRD) diagram revealed 7% (volume fraction) reverted austenite after final deformation pass. Moreover, HRTEM images revealed nano-void nucleation at the interface of severely deformed martensite and reverted austenite presumably due to high strain energy of misfit and molar volume difference between the austenite and the martensite. It seems that the coalescence of nano-voids could lead to the formation of microvoids in the microstructure.  相似文献   
8.
The martensite start temperature and driving force were calculated for the austenite to martensite transformation of a dual-phase bainitic ferrite–austenite steel at room temperature. The mechanical energy was estimated during the first and the second pass of equal channel angular pressing (ECAP). The applied mechanical energy during the first pass is not enough to induce the austenite to martensite transformation. However, the mechanical energy during the second pass can provide the required energy for the martensite formation. Microstructural observations by transmission electron microscopy and scanning electron microscopy of as-received and ECAPed samples confirm the formation of martensite during the second pass.  相似文献   
9.
This paper is concerned with a quasi-3D design method for the radial and axial diffusers of a centrifugal compressor on the meridional plane. The method integrates a novel inverse design algorithm, called ball-spine algorithm (BSA), and a quasi-3D analysis code. The Euler equation is solved on the meridional plane for a numerical domain, of which unknown boundaries (hub and shroud) are iteratively modified under the BSA until a prescribed pressure distribution is reached. In BSA, unknown walls are composed of a set of virtual balls that move freely along specified directions called spines. The difference between target and current pressure distributions causes the flexible boundary to deform at each modification step. In validating the quasi-3D analysis code, a full 3D Navier-Stokes code is used to analyze the existing and designed compressors numerically. Comparison of the quasi-3D analysis results with full 3D analysis results shows viable agreement. The 3D numerical analysis of the current compressor shows a huge total pressure loss on the 90° bend between the radial and axial diffusers. Geometric modification of the meridional plane causes the efficiency to improve by about 10%.  相似文献   
10.
The induced martensite transformation in a dual-phase bainitic ferrite–austenite steel during heavy compression was studied by thermodynamic computations. Compression tests were conducted at temperatures of 298 and 573 K on the rectangle samples at the strain rate of 0.001 s−1. The samples were deformed to 40 and 70% of their original thickness. It was found that 70% compression of the steel at room temperature resulted in transformation of retained austenite to martensite, which is in agreement with thermodynamic calculations. Additionally, heavy compression resulted in the formation of fine grains with high angle grain boundaries which confirms grain refinement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号