首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1524篇
  免费   25篇
  国内免费   6篇
工业技术   1555篇
  2022年   7篇
  2021年   15篇
  2020年   7篇
  2019年   8篇
  2018年   14篇
  2017年   15篇
  2016年   18篇
  2015年   10篇
  2014年   28篇
  2013年   65篇
  2012年   47篇
  2011年   63篇
  2010年   36篇
  2009年   65篇
  2008年   63篇
  2007年   53篇
  2006年   62篇
  2005年   53篇
  2004年   45篇
  2003年   55篇
  2002年   46篇
  2001年   28篇
  2000年   29篇
  1999年   29篇
  1998年   124篇
  1997年   88篇
  1996年   73篇
  1995年   55篇
  1994年   44篇
  1993年   44篇
  1992年   22篇
  1991年   30篇
  1990年   21篇
  1989年   17篇
  1988年   12篇
  1987年   24篇
  1986年   11篇
  1985年   19篇
  1984年   9篇
  1983年   8篇
  1982年   9篇
  1981年   10篇
  1980年   13篇
  1979年   6篇
  1978年   6篇
  1977年   14篇
  1976年   13篇
  1975年   4篇
  1974年   4篇
  1969年   3篇
排序方式: 共有1555条查询结果,搜索用时 46 毫秒
1.
In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the ‘understanding the brain by creating the brain’ approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognitive science with special emphasis on humanoid robots. Third, in brain–machine interface research, a brain and a robot are mutually connected within a closed loop. In this paper, we review the theoretical backgrounds of these three interdisciplinary fields and their recent progress. Then, we introduce recent efforts to reintegrate these research fields into a coherent perspective and propose a new direction that integrates brain science and robotics where the decoding of information from the brain, robot control based on the decoded information and multimodal feedback to the brain from the robot are carried out in real time and in a closed loop.  相似文献   
2.
In this paper, we consider an integrated Resource Selection and Operation Sequences (iRS/OS) problem in Intelligent Manufacturing System (IMS). Several kinds of objectives are taken into account, in which the makespan for orders should be minimized; workloads among machine tools should be balanced; the total transition times between machines in a local plant should also be minimized. To solve this multiobjective iRS/OS model, a new two vectors-based coding approach has been proposed to improve the efficiency by designing a chromosome containing two kinds of information, i.e., operation sequences and machine selection. Using such kind of chromosome, we adapt multistage operation-based Genetic Algorithm (moGA) to find the Pareto optimal solutions. Moreover a special technique called left-shift hillclimber has been used as one kind of local search to improve the efficiency of our algorithm. Finally, the experimental results of several iRS/OS problems indicate that our proposed approach can obtain best solutions. Further more comparing with previous approaches, moGA performs better for finding Pareto solutions. Received: May 2005/Accepted: December 2005  相似文献   
3.
The microbial transformation of l‐menthol ( 1 ) was investigated by using 12 isolates of soil‐borne plant pathogenic fungi, Rhizoctonia solani (AG‐1‐IA Rs24, Joichi‐2, RRG97‐1; AG‐1‐IB TR22, R147, 110.4; AG‐1‐IC F‐1, F‐4, P‐1; AG‐1‐ID RCP‐1, RCP‐3, and RCP‐7) as a biocatalyst. Rhizoctonia solani F‐1, F‐4 and P‐1 showed 89.7–99.9% yields of converted product from 1 , RCP‐1, RCP‐3, and RCP‐7 26.0–26.9% and the other isolates 0.1–12.0%. In the cases of F‐1, F‐4 and P‐1, substrate 1 was converted to (?)‐(1S,3R,4S,6S)‐6‐hydroxymenthol ( 2 ), (?)‐(1S,3R,4S)‐1‐hydroxymenthol ( 3 ) and (+)‐(1S,3R,4R,6S)‐6,8‐dihydroxymenthol ( 4 ), which was a new compound. Substrate 1 was converted to 2 and/or 3 by RRG97‐1, 110.4, RCP‐1, RCP‐3 and RCP‐7. The structures of the metabolic products were elucidated on the basis of their spectral data. In addition, metabolic pathways of the biotransformation of 1 by Rhizoctonia solani are discussed. Finally, from the main component analysis and the differences in the yields of converted product from 1 , the 12 isolates of Rhizoctonia solani were divided into three groups based on an analysis of the metabolites. Copyright © 2003 Society of Chemical Industry  相似文献   
4.
The fracture toughness testing of short fibre reinforced thermoplastic materials were performed. Materials tested were the polyimide resin and also that reinforced with 20 wt% or 30 wt% short carbon fibre. For introducing the initial crack, the tapping method, the sliding method and the bridge indentation method were examined. Among them, the sliding method was found to be effective for every case. The fracture tests were conducted by the three-point bending test with several loading rates. Stable crack growth was observed for the neat material while unstable fracture occurred for the reinforced materials. The critical values of the stress intensity factor at crack initiation were greater for the reinforced materials than for the neat resin. The fracture toughness of the 30 wt% reinforced material was independent of loading rate while that of 20 wt% reinforced material increased with loading rate. In order to investigate the fracture mechanisms, fractographic observations were also performed.  相似文献   
5.
Application of the polymerase chain reaction (PCR) method for detection of subgenus B adenoviruses (types 3, 7 and 11) was investigated. It is based on a simple (nonnested) PCR using primer pairs specific for the hexon-coding region. The PCR allowed amplification of DNA from subgenus B adenovirus prototype strains (types 3, 7 and 11) and adenovirus isolates (types 3 and 7), whereas it did not amplify DNA from subgenus A (type 31), C (types 1, 2, 5 and 6), D (types 8, 19 and 37), E (type 4) and adenovirus isolates (types 1, 2, 5 and 6). These results suggest that subgenus B adenoviruses (types 3, 7 and 11) are detectable selectively by means of PCR with primer pairs developed in this study. Amplified fragments from adenovirus types 3, 7 and 11 could be differentiated with restriction endonuclease analysis with Rsa I.  相似文献   
6.
Phase behavior in liquid crystallization was studied for a series of liquid crystalline (LC) diblock copolymers consisting of rubbery amorphous and side-chain liquid crystalline components, poly(n-butyl acrylate) (PBA) and poly[11-(4′-cyanophenyl-4″-phenoxy)undecyl acrylate] (PLC), respectively, using a time-resolved small-angle X-ray scattering (SAXS) techniques, DSC and polarized optical microscopy (POM). The block copolymers used had three kinds of copolymer compositions, 44, 20 and 15 wt% of PLC compositions (BLC44, BLC20 and BLC15, respectively). BLC44 showed a smectic liquid crystalline structure. In the process of liquid crystallization for BLC44, the SAXS peak due to the microphase separation structure existing before liquid crystallization was changed continuously to be at a smaller angular side, and at almost the same time, a new peak appeared at a further smaller angular side and developed. The former peak disappeared with the development of liquid crystallization. The behavior of these SAXS peaks suggests that the microphase separation structure was changed discretely at the transition from isotropic to smectic and that two phases coexist in the early stage of the liquid crystallization. The coexistence of two peaks in the early stage of the liquid crystallization corresponded to the POM observation. In the isotropization process, coexistence of two phases was not observed. For BLC20 exhibiting a cylindrical structure in both isotropic and liquid crystalline states, the liquid crystalline structure was not smectic but probably nematic, and the spacing was changed continuously in liquid crystallization. No liquid crystallization was observed in SAXS, POM and DSC for BLC15. The orientation of smectic layers within lamellar domains was investigated using 2D-SAXS images. The smectic layer was aligned perpendicularly to the lamellar interface.  相似文献   
7.
8.
BACKGROUND: The biotransformation of sesquiterpenoids, which are a large class of naturally occurring compounds, using microorganisms as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpenoids, (+)‐aromadendrene ( 1 ), (−)‐alloaromadendrene ( 2 ) and (+)‐ledene ( 3 ) has been investigated using Aspergillus wentii as a biocatalyst. Results: Compound 1 was converted to (−)‐(10S,11S)‐10,13,14‐trihydroxyaromadendrane ( 4 ). Compound 2 was converted to (+)‐(1S,11S)‐1,13‐dihydroxyaromadendrene ( 5 ) and (−)‐5,11‐epoxycadin‐1(10)‐en‐14‐ol ( 6 ). Compound 3 was converted to compound 6 , (+)‐(10R,11S)‐10,13‐dihydroxyaromadendr‐1‐ene ( 7 ) and (+)‐(10S,11S)‐10,13‐dihydroxyaromadendr‐1‐ene ( 8 ). The structure of the metabolic products has been elucidated on the basis of their spectral data. CONCLUSION: Compound 1 gave only one product that was hydroxylated at C‐10, C‐13 and C‐14. By contrast, compounds 2 and 3 gave a number of products, one of which was common. The differences in oxidation of 1–3 are due to the configuration of the C‐1 position. Compounds 4–8 were new compounds. Copyright © 2008 Society of Chemical Industry  相似文献   
9.
The Earth Simulator (ES), developed under the Japanese government’s initiative “Earth Simulator project”, is a highly parallel vector supercomputer system. In this paper, an overview of ES, its architectural features, hardware technology and the result of performance evaluation are described.

In May 2002, the ES was acknowledged to be the most powerful computer in the world: 35.86 teraflop/s for the LINPACK HPC benchmark and 26.58 teraflop/s for an atmospheric general circulation code (AFES). Such a remarkable performance may be attributed to the following three architectural features; vector processor, shared-memory and high-bandwidth non-blocking interconnection crossbar network.

The ES consists of 640 processor nodes (PN) and an interconnection network (IN), which are housed in 320 PN cabinets and 65 IN cabinets. The ES is installed in a specially designed building, 65 m long, 50 m wide and 17 m high. In order to accomplish this advanced system, many kinds of hardware technologies have been developed, such as a high-density and high-frequency LSI, a high-frequency signal transmission, a high-density packaging, and a high-efficiency cooling and power supply system with low noise so as to reduce whole volume of the ES and total power consumption.

For highly parallel processing, a special synchronization means connecting all nodes, Global Barrier Counter (GBC), has been introduced.  相似文献   

10.
We constructed and tested a prototype gas sampling electromagnetic calorimeter of the Pb-proportional tube sandwich type. The calorimeter uses conductive plastic tubes and cathode pad readout with a tower structure which resulted in reasonable energy and spatial resolutions for electrons in the momentum range 0.5–4.0 GeV/c; σEE = 21%(E(GeV))12, σx = 6 mm (at 3 GeV/c). This paper describes the test and the performance studied under various conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号