首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   10篇
  国内免费   3篇
工业技术   302篇
  2024年   1篇
  2023年   6篇
  2022年   10篇
  2021年   12篇
  2020年   16篇
  2019年   18篇
  2018年   18篇
  2017年   21篇
  2016年   15篇
  2015年   10篇
  2014年   24篇
  2013年   41篇
  2012年   10篇
  2011年   12篇
  2010年   14篇
  2009年   12篇
  2008年   15篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1970年   1篇
排序方式: 共有302条查询结果,搜索用时 592 毫秒
1.
2.
The prototyping of complex sheet metal parts using single point incremental forming (SPIF) requires the generation of optimal tool paths and/or tool path sequences that ensure that the formed part is within geometric design specifications. The presence of a multitude of features on complex parts leads to multiple inaccuracy inducing phenomena occurring simultaneously due to interactions between the features. This paper proposes a network analysis methodology using topological conceptual graphs to capture the effects of different phenomena on the final accuracy of a sheet metal part manufactured by SPIF. Using this framework optimized tool paths can be generated that compensate for the inaccuracy inducing behavior. Tool path generation algorithms to create partial tool paths that account for the accuracy of specific features in the part based on the proposed framework are also presented. Finally, the creation of integrated tool paths maintaining complementarity between tool paths and desired continuity behavior using non-uniform cubic B-splines is illustrated. A number of case studies demonstrating the applicability of the integrated framework are discussed, where the maximum deviations in the part are significantly reduced and the average absolute deviations for the complete part are brought down to less than 0.5 mm.  相似文献   
3.
Organic solvent nanofiltration (OSN) is gradually expanding from academic research to industrial implementation. The need for membranes with low and sharp molecular weight cutoffs that are able to operate under aggressive OSN conditions is increasing. However, the lack of comparable and uniform performance data frustrates the screening and membrane selection for processes. Here, a collaboration is presented between several academic and industrial partners analyzing the separation performance of 10 different membranes using three model process mixtures. Membrane materials range from classic polymeric and thin film composites (TFCs) to hybrid ceramic types. The model solutions were chosen to mimic cases relevant to today's industrial use: relatively low molar mass solutes (330–550 Da) in n-heptane, toluene, and anisole.  相似文献   
4.
Journal of Applied Electrochemistry - The choice of the electroplating conditions of Ni-based alloys has always been a serious research question. In this study, an artificial neural network based...  相似文献   
5.
Performance of four microbial fuel cells (MFC-1, MFC-2, MFC-3 and MFC-4) made up of earthen pots with wall thicknesses of 3, 5, 7 and 8.5 mm, respectively, was evaluated. The MFCs were operated in fed batch mode with synthetic wastewater having sucrose as the carbon source. The power generation decreased with increase in the thickness of the earthen pot which was used to make the anode chamber. MFC-1 generated highest sustainable power density of 24.32 mW/m(2) and volumetric power of 1.04 W/m(3) (1.91 mA, 0.191 V) at 100 Ω external resistance. The maximum Coulombic efficiencies obtained in MFC-1, MFC-2, MFC-3 and MFC-4 were 7.7, 7.1, 6.8 and 6.1%, respectively. The oxygen mass transfer and oxygen diffusion coefficients measured for earthen plate of 3 mm thickness were 1.79 × 10(-5) and 5.38 × 10(-6) cm(2)/s, respectively, which implies that earthen plate is permeable to oxygen as other polymeric membranes. The internal resistance increased with increase in thickness of the earthen pot MFCs. The thickness of the earthen material affected the overall performance of MFCs.  相似文献   
6.
7.
ABSTRACT

Event-triggering strategy is one of the real-time control implementation techniques which aims at achieving minimum resource utilisation while ensuring the satisfactory performance of the closed-loop system. In this paper, we address the problem of robust stabilisation for a class of nonlinear systems subject to external disturbances using sliding mode control (SMC) by event-triggering scheme. An event-triggering scheme is developed for SMC to ensure the sliding trajectory remains confined in the vicinity of sliding manifold. The event-triggered SMC brings the sliding mode in the system and thus the steady-state trajectories of the system also remain bounded within a predesigned region in the presence of disturbances. The design of event parameters is also given considering the practical constraints on control execution. We show that the next triggering instant is larger than its immediate past triggering instant by a given positive constant. The analysis is also presented with taking delay into account in the control updates. An upper bound for delay is calculated to ensure stability of the system. It is shown that with delay steady-state bound of the system is increased than that of the case without delay. However, the system trajectories remain bounded in the case of delay, so stability is ensured. The performance of this event-triggered SMC is demonstrated through a numerical simulation.  相似文献   
8.
A novel square ring printed antenna has been suggested for dual‐band circular polarization (CP). The geometry contains a square patch and a square ring structure for dual‐band operation. Circular polarization is achieved using triangular cut at the boundary and right angle bend with inner perturbation. The suggested antenna is excited from the lower layer through electromagnetic (EM) coupling technique. The antenna shows good impedance bandwidths of 90 MHz (2.43‐2.52 GHz) and 800 MHz (5.7‐6.5 GHz, respectively. The antenna shows 3 dB axial ratio bandwidth of 20 MHz at lower band and 120 MHz at upper band with improved gain > 6 dBi. The simulated and measured results are well agreed with each other. The antenna is promising wideband operation at the upper band. This antenna was implemented on fiberglass reinforcement laminated Arlon substrate with dielectric constant (?r = 2.55), and the overall physical dimension of 30 × 30 × 3.048 mm3. The designed antenna can be extensibly applicable in WLAN/Wi‐MAX communication. The presented antenna is designed using hyperlynx IE3D and the simulated results are presented.  相似文献   
9.
Quantum cheques could be a forgery-free way to make transaction in a quantum networked banking system with perfect security against any no-signalling adversary. Here, we demonstrate the implementation of quantum cheque, proposed by Moulick and Panigrahi (Quantum Inf Process 15:2475–2486, 2016), using the five-qubit IBM quantum computer. Appropriate single qubit, CNOT and Fredkin gates are used in an optimized configuration. The accuracy of implementation is checked and verified through quantum state tomography by comparing results from the theoretical and experimental density matrices.  相似文献   
10.
In the context of a robot manipulator, a generalized neural emulator over the complete workspace is very difficult to obtain because of dimensionally insufficient training data. A query based learning algorithm is proposed in this paper that can generate new examples where control inputs are independent of states of the system. This algorithm is centered around the concept of network inversion using an extended Kalman filtering based algorithm. This is a novel idea since robot manipulator is an open loop unstable system and generation of control input independent of state is a research issue for neural model identification. Two trajectory independent stable control schemes have been designed using the neural emulator. One of the control schemes uses forward-inverse-modeling approach to update the controller parameters adaptively following Lyapunov function synthesis technique. The proposed scheme is trajectory independent unlike the back-propagation scheme. The second type of controller predicts the minimum variance estimate of control action using recall process (network inversion) and the control law is derived following a Lyapunov function synthesis approach so that the closed loop system consisting of controller and neural emulator remains stable. The simulation experiments show that the model validation approach is efficient and the proposed control schemes guarantee stable accurate tracking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号