首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
工业技术   4篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
介绍共轴式双旋翼推力吸附爬壁机器人,通过优化推力吸附机构和机架,增强负载能力、降低能耗、增加续航时间. 采用控制变量法控制推力吸附机构的气动参数如叶片数、桨叶安装角、间距比等,建立不同气动参数下机器人气动模型并进行流场仿真。基于仿真结果,完成推力吸附机构的优化设计;基于拓扑优化用构建响应面叠加多目标遗传优化算法(MOGA)、直接单目标自适应优化算法(AS-O)优化,完成机器人机架结构参数优化设计。与初始结构相比,机架上、下层板质量分别降低了55.62%、25.39%. 试验推力吸附机构和机器人攀爬能力,结果表明,推力吸附机构气动仿真结果可靠,上、下层旋翼旋转中心轴偏差与推力吸附机构性能关系密切,机器人具备良好壁面攀爬能力.  相似文献   
2.
本文把空气动力学结合到机械结构设计之中,设计了一款能在壁面灵活移动、能在简单的相邻壁面间翻越、具备一定量的负载能力、履带式行走方式、共轴双旋翼提供推力的机器人平台。先对选定翼型进行2维的外流场计算,求得"最经济状态点",以确定上、下旋翼的安装角分别为6°和5°。在此基础上,再求解出旋翼直径、旋翼机构推力与电机功率三者之间的关系。然后以旋翼直径为基础,对机器人平台的各个部分重量进行关联。最后把旋翼直径、电机功率和整机重量三者串联起来,建立Simulink模型,当旋翼直径等于376.4 mm时,求得最小重量的机器人平台。对旋翼安装角、直径和整机重量的探讨和计算,为下一步的三维仿真和实物搭建奠定基础。  相似文献   
3.
为了使试验台的测试范围更广、测试效率更高和更具针对性,提出了个性化的测试方案。基于LabVIEW虚拟仪器开发的测试系统,根据试验项目的个性化选择,对被选择模块赋零值,大大缩短了试验的时间,加快了试验进程,降低了试验成本。该试验台能组合的可选择性自动测试模块一共有511块,使得该试验台的液压CAT技术变得更具针对性和灵活性。  相似文献   
4.
针对手传振动问题,设计出一种上肢穿戴式工业装配抗振外骨骼作为干预装备。采用ADAMS建立了参数化的人机耦合仿真模型;为优化外骨骼减振单元结构参数,对外骨骼减振单元结构进行了单因素振动响应分析,发现减振器阻尼系数及安装位置是影响外骨骼减振性能的关键因素,剪式减振结构的前后弹簧刚度差异化取值时的效果更佳,通过交互正交试验得到修正的最佳因素水平组合。以接触压力和计权振动值为指标,通过抗振性能试验来评估外骨骼样机的减振性能,发现外骨骼在铆接期可减小约39.9%的接触压力,在间歇期接触压力减小49.4%,穿戴外骨骼可减小15.1%的日接振值,单日铆接效率最大可提高18%;接触压力和接振值的变化证明外骨骼具有减振及工具支撑功能。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号