首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
工业技术   9篇
  2020年   1篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   1篇
排序方式: 共有9条查询结果,搜索用时 546 毫秒
1
1.
首先使微米CeO2在乙醇中球磨分散,然后向悬浮液中加入一定量去离子水,最后对悬浮液进行超声分散,使用这种方法制备出了分散稳定性较好的微米CeO2悬浮液,探讨了其增强微米CeO2分散稳定性的机制。结果表明:微米CeO2以不同方式分散时在不同比例醇水混合介质中的分散行为各不相同;微米CeO2在纯乙醇中的球磨分散性能最好,其起始分散率可以达到80%左右,而在醇水混合介质中的超声分散性能比在纯乙醇或纯水中的超声分散性能要好,但其起始分散率不高,只能达到20%左右。球磨后加水再超声分散的方法可以显著地提高微米CeO2悬浮液体系的分散性能,其中加入去离子水的最佳体积分数为40%,最佳超声时间为15 min。球磨后加水再超声分散的方法可以进一步打破微米CeO2粉体颗粒间的团聚,使粉体粒径得到进一步的细化,由于去离子水的加入悬浮液体系的表面电位得到了较大提高,乙醇水合团簇的形成使颗粒周围的溶剂化膜变厚。  相似文献   
2.
本文基于湿法球磨分散工艺,利用Fluent对纳米CeO2悬浮液的球磨过程进行仿真模拟,提出以球磨罐磨腔内压强作为其分散效果的评价指标,获得球磨转速、填充率以及球料比等工艺参数对磨腔内压强的影响规律。研究表明,球磨机转速在一定范围内变化时,其转速越大,磨球运动愈激烈,磨腔内压强越大;填充率由0变化为1时,磨腔内压强先增大后减小;球料比增大时,磨腔内压强逐渐增大至平稳。同时采用三因素三水平正交试验,通过沉降试验考察球磨工艺参数对纳米CeO2悬浮液分散效果的影响,验证了球磨仿真的正确性。  相似文献   
3.
This paper presented a scientific study of the effects of four dispersion methods on the dispersion capability of nano La2O3 suspensions, which are ball milling, ultrasonic, ultrasonic followed by ball milling and ball milling followed by ultrasonic. For the purposes of comparing their dispersion capability, sedimentation test, Zeta-potential measurement test, particles size measurement test and transmission electron microscopy (TEM) test were carried out. Suspension ability coefficient was also defined with expectation to estimate the stability of nano La2O3 suspension through granularity size, and their relationship curve was worked out. The results showed that ultrasonic followed by ball milling enjoyed an excellent capability of dispersion for nano La2O3 suspension. Its mechanism was discussed, and breakage models of nano La2O3 particles were developed. The study results indicated that ultrasonic followed by ball milling could break through both the limits of ultrasonic dispersion size range and thermo-effect, and thus was able to overcome the problem of the secondary aggregation of nanoparticles. Moreover, aggregations could be further de-agglomerated. As a result, dispersion capability of nano La2O3 suspension could be improved more greatly by ultrasonic followed by ball milling. And its suspension stability was the best with the highest suspension ability coefficient of the nanoparticles. It was found in the experiment that there was almost no obvious phenomenon of stratification for the suspension with a little sediment after being deposited for 8 d.  相似文献   
4.
采用正交实验和单因素实验相结合的方法,研究了球磨工艺参数(包括粉体质量分数、球磨机转速、球磨时间、球料比和球配比)对微细La2O3水悬浮液分散性的影响及其作用机理,获得了优化后的球磨工艺参数,据此制备出的悬浮液的粉体分散率高达97.88%。粒度测试结果表明采用优化的工艺参数球磨后得到的La2O3颗粒更加细小,分布更加均匀,计算出单个粒径为6μm的La2O3颗粒经过球磨后可以得到球径为1.5μm的颗粒数与球径为0.25μm的颗粒数之比约为1∶195。根据Stokes定律和爱因斯坦方程获得了微细La2O3颗粒沉降位移及扩散位移与其粒度间的函数曲线,从而揭示出采用优化球磨工艺参数球磨后微细La2O3水悬浮液的高分散机理。  相似文献   
5.
通过测定20nm、200nm、500nm和5μmCeO2粉体在醇水混合介质中的粒度分布、表面电性及分散稳定性,研究了不同粒径级别超细CeO2粉体在体积比为1∶1的醇水系悬浮液中的超声分散行为。实验结果表明:在一定超声功率和超声频率下,不同粒径级别醇水系CeO2悬浮液均存在最佳超声时间。不同粒径级别醇水系CeO2悬浮液的表面电性各不相同;纳米级和亚微米级CeO2在醇水中所带Zeta电位为正值,微米级CeO2的Zeta电位为负值,悬浮液中CeO2粉体的平均粒度越大,其电位绝对值越小。不同粒径级别醇水系CeO2悬浮液的分散稳定性能各不相同;从超声结束后的分散效果来看,亚微米CeO2粉体在醇水混合介质中的分散性能最好;从多个沉降时间段内的稳定性来看,纳米CeO2粉体在醇水混合介质中的稳定性能最好。  相似文献   
6.
利用大型有限元软件MSC.MARC对MCrAlY熔覆粉末单向冷压成形过程进行了数值模拟分析.建立了粉末片压制成形过程的二维有限元模型,确定了MCrAlY熔覆粉末的材料模型、单向冷压成形过程的初始条件和边界条件,获得了粉末单向冷压过程中沿其高度和直径方向位移的变化规律.提出将粉末片最大相对密度作为其理论相对密度,获得了粉末片孔隙度、致密度、相对密度及其高度随压制力的变化关系.基于Matlab对压制后的粉末片进行图像处理,获得了粉末片的实际高度和粉末片上下表面的相对密度,验证了有限元仿真模型的合理性和可靠性.  相似文献   
7.
柳振平 《砖瓦》2020,(5):82-83
随着我国经济的快速发展,当前建筑行业正处于高速发展阶段。结合建筑行业所涉及的具体内容,我国是使用建筑幕墙最多的国家。鉴于建筑幕墙在整体施工中所具有的优势,幕墙工程已经逐渐得到大范围的推广与使用。但是,结合具体施工情况,当前幕墙工程也遇到不同方面的问题,将针对我国建筑行业幕墙工程结构的要点进行具体分析。  相似文献   
8.
基于预置压片的高温合金激光熔覆温度场仿真   总被引:1,自引:1,他引:0  
针对激光熔覆的特点,利用APDL参数化设计语言建立合理的三维瞬态温度场数值模型,综合考虑热源模型、相变潜热、材料属性变化、动态边界条件和动态接触热阻等。在镍基高温合金表面激光熔覆NiCoCrAl-Y2O3粉末片,计算结果与实验结果对比表明,该模型激光熔覆瞬态温度场的数值模拟结果和实验结果具有较好的吻合性,验证该模型的可靠性和正确性。  相似文献   
9.
为了考察不同粒径氧化铈对NiCoCrAlY涂层抗氧化性能的影响,分析了未加稀土和添加相同含量纳米级、亚微米级和微米级氧化铈的NiCoCrAlY激光熔覆涂层在1100℃下大气氛围中的等温氧化行为。结果表明,氧化铈的引入,能够较好地提高NiCoCrAlY涂层的抗氧化性能,其中纳米氧化铈的改善作用最为显著、亚微米氧化铈次之、而微米氧化铈最弱。可见,氧化铈对NiCoCrAlY涂层抗氧化性能的改善作用与其粒径有着密切关系。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号