首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
医药卫生   6篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The genome of soybean (Glycine max), a commercially important crop, has recently been sequenced and is one of six crop species to have been sequenced. Here we report the genome sequence of G. soja, the undomesticated ancestor of G. max (in particular, G. soja var. IT182932). The 48.8-Gb Illumina Genome Analyzer (Illumina-GA) short DNA reads were aligned to the G. max reference genome and a consensus was determined for G. soja. This consensus sequence spanned 915.4 Mb, representing a coverage of 97.65% of the G. max published genome sequence and an average mapping depth of 43-fold. The nucleotide sequence of the G. soja genome, which contains 2.5 Mb of substituted bases and 406 kb of small insertions/deletions relative to G. max, is ~0.31% different from that of G. max. In addition to the mapped 915.4-Mb consensus sequence, 32.4 Mb of large deletions and 8.3 Mb of novel sequence contigs in the G. soja genome were also detected. Nucleotide variants of G. soja versus G. max confirmed by Roche Genome Sequencer FLX sequencing showed a 99.99% concordance in single-nucleotide polymorphism and a 98.82% agreement in insertion/deletion calls on Illumina-GA reads. Data presented in this study suggest that the G. soja/G. max complex may be at least 0.27 million y old, appearing before the relatively recent event of domestication (6,000~9,000 y ago). This suggests that soybean domestication is complicated and that more in-depth study of population genetics is needed. In any case, genome comparison of domesticated and undomesticated forms of soybean can facilitate its improvement.  相似文献   
2.
Effective and reliable clinical uses of dental ceramics necessitate an insightful analysis of the fracture behaviour under critical conditions. To better understand failure characteristics of porcelain veneered to zirconia core ceramic structures, thermally induced cracking during the cooling phase of fabrication is studied here by using the extended finite element method (XFEM). In this study, a transient thermal analysis of cooling is conducted first to determine the temperature distributions. The time-dependent temperature field is then imported to the XFEM model for viscoelastic thermomechanical analysis, which predicts thermally induced damage and cracking at different time steps. Temperature-dependent material properties are used in both transient thermal and thermomechanical analyses. Three typical ceramic structures are considered in this paper, namely bi-layered spheres, squat cylinders and dental crowns with thickness ratios of either 1:2 or 1:1. The XFEM fracture patterns exhibit good agreement with clinical observation and the in vitro experimental results obtained from scanning electron microscopy characterization. The study reveals that fast cooling can lead to thermal fracture of these different bi-layered ceramic structures, and cooling rate (in terms of heat transfer coefficient) plays a critical role in crack initiation and propagation. By exploring different cooling rates, the heat transfer coefficient thresholds of fracture are determined for different structures, which are of clear clinical implication.  相似文献   
3.
ObjectivesTo develop an approximate analytical model that identifies the influence of both cusp angle and notch radius on the failure load of all-ceramic premolar crowns.MethodsThe scatter of failure loads in a crown fracture resistance test was analyzed based on the stress intensity and stress concentration factors from mechanics models developed for simple compact tension to more sophisticated blunt V-notch specimens. Based on the same loading conditions and dimensions, the predicted loads were systematically compared with fracture loads of laboratory-tested crowns to identify the most relevant model. Finally, based upon these models a safe range of cusp angles and notch radii were identified for posterior all-ceramic crowns with various veneering materials’ fracture toughness values as the selection criteria.ResultsThe failure loads of the crowns were distributed in the range between the classical compact tension (lower bound) and blunt V-notch model (upper bound). Additionally, when considering the effect of different materials, the predicted trend of failure loads moves to higher loads well above typical occlusal forces when the fracture toughness of veneering porcelain is increased. The effects of notch radius on the failure load are still inconclusive due to the relatively complex shape of occlusal surfaces. Further studies on crowns with a range of material properties are required to substantiate the model.SignificanceCusp angle is a key factor that controls the stress generated at the crown fissure. This study provides the rationale for evaluating such effects and clinical guidelines for occlusal design are proposed.  相似文献   
4.

Objectives

To evaluate the influence of occlusal geometry of all-ceramic pre-molars, namely cusp angle and associated notch radius, on the scatter of load to failure tests.

Methods

Forty-five all-ceramic upper pre-molar crowns with three zirconia core thicknesses (0.4, 0.6 and 0.8 mm) were broken on dental implant abutments oriented in three angulations (0°, 15°, and 30°). The crowns were loaded using a 4 mm diameter steel cylindrical bar placed along the midline fissure at a crosshead speed of 1 mm min−1. The scatter of the failure load was evaluated using Weibull analysis. The cusp angle of each crown was critically evaluated to determine the cusp angle and effective radius of the fissure notch root. The relationship between failure load and cusp angle was compared with that between failure load and effective radius as well as notch induced stress concentration by considering R2 values of fitted trend lines with these relationships.

Results

The fracture load differences either between abutment angulations or zirconia thicknesses were not clearly revealed in this study. Except for the group of 30° abutment angulation, the crowns present high scatter of failure loads with low Weibull modulus. However, a simple dependence between fracture load and effective cusp angle was observed.

Significance

Occlusal geometry is an important issue that affects the degree of stress concentration and should be understood by both technician and clinician for appropriate design and material selection of all-ceramic crowns.  相似文献   
5.
The objectives of this study were to identify the effect of design parameters, namely marginal thickness, degree of convergence and the different interfacial conditions, on the initial failure load that induces cracking from the margin in glass-simulated dental crowns. Crown-like glass cylinders were prepared to simulate posterior all-ceramic crowns with two different marginal thicknesses (0.8 or 1.2 mm) and degrees of convergence (6° or 12°). A three-step bonding system was used complementarily with a silane coupling agent to adhesively bond the specimens to resin dies. The crowns were subjected to an axial applied load to generate hoop tensile stress at the crown margin. The entire loading and fracture processes were recorded by video camera. The loading data were compared with the other two interfacial treatments (Vaseline grease and directly poured uncured resin on glass). The Weibull distribution was used to statistically analyze the characteristic failure load and the mean values. The fracture surfaces were fractographically analyzed along with the load–displacement curves, and the degrees of crack stability for each parameter were also identified. It was found that there is no difference in the initial failure load between the different marginal thicknesses in all interfacial conditions. The bonded crowns present more resistance to crack propagation. The higher convergence crown preparation can reduce the initial failure load at the crowns’ margin, which can be resisted by a strongly bonded interface. Clear interactions between margin design parameters and their effects on the stress development and crack propagation are necessary to develop an appropriate design of all-ceramic crowns.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号