首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
工业技术   6篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2004年   1篇
  1986年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The application of a rapid screening method for the construction of ternary phase diagrams is described for the first time, providing detailed visualization of phase boundaries in solvent‐mediated blends. Our new approach rapidly identifies ternary blend compositions that afford optically clear materials, useful for applications where transparent films are necessary. The use of 96‐well plates and a scanning plate reader has enabled rapid optical characterization to be carried out by transmission spectrophotometry (450 nm), whilst the nature and extent of crystallinity was examined subsequently by wide angle X‐ray scattering (WAXS). The moderating effect of cellulose acetate butyrate can be visualized as driving the position of the phase boundaries in poly(l ‐lactic acid)/polycaprolactone (PLLA/PCL) blends. More surprisingly, the boundaries are critically dependent on the molecular weight of the crystallizable PLLA and PCL, with higher molecular weight polymers leading to blends with reduced phase separation. On the other hand, the propensity to crystallize was more evident in shorter chains. WAXS provides a convenient way of characterizing the contribution of the individual blend components to the crystalline regions across the range of blend compositions.© 2013 Society of Chemical Industry  相似文献   
2.
Ternary blends of poly(lactic acid) (PLA), polycaprolactone (PCL) and cellulose acetate butyrate (CAB) were fabricated into the form of electrospun nanofibres targeted for skin tissue scaffolds. The effects of blend ratio and molecular mass of PCL (PCL1 and PCL2) on morphology, miscibility, crystallinity, thermal properties, surface hydrophilicity and cell culture of the nanofibres were investigated. Blends with high PLA loading (80/10/10 PLA/PCL/CAB) gave fibres with a smooth surface, owing to the enhanced miscibility between the polymer chains from the presence of CAB, which acts as compatibilizer. In contrast, blends with high PCL loading were immiscible, which led to beads during the electrospinning process. The increased molecular mass of PCL2 produced smoother fibres than low‐molecular‐mass PCL1. The XRD patterns of blends of PLA/PCL1/CAB and PLA/PCL2/CAB were similar to one another, in which the high‐crystallinity peaks of PCL seen for 20/70/10 blends were very small for 50/40/10 blends and much less prevalent for 80/10/10 blends. Better fibre formation (80/10/10 > 50/40/10 > 20/70/10) with less crystallinity occurs in well‐formed fibres. Selected blends of PLA/PCL/CAB promoted growth of NIH/3T3 fibroblast cells, demonstrating that our novel biocompatible ternary blend nanofibrous scaffolds have potential in skin tissue repair applications. In addition, this work helps in the design and understanding of the factors that control the properties of nanofibrous PLA/PCL/CAB scaffolds. © 2017 Society of Chemical Industry  相似文献   
3.
Silk sericin (SS) has been extensively used to fabricate scaffolds for tissue engineering. However, due to its inferior mechanical properties, it has been found to be a poor choice of material when being electrospun into nanofibrous scaffolds. Here, SS has been combined with poly(vinyl alcohol) (PVA) and electrospun to create scaffolds with enhanced physical properties. Crucially, these SS/PVA nanofibrous scaffolds were created using only distilled water as a solvent with no added crosslinker in an environmentally friendly process. Temperature has been shown to have a marked effect on the formation of the SS sol–gel transition and thus influence the final formation of fibers. Heating the spinning solutions to 70 °C delivered nanofibers with enhanced morphology, water stability and mechanical properties. This is due to the transition of SS from β‐sheets into random coils that enables enhanced molecular interactions between SS and PVA. The most applicable SS/PVA weight ratios for the formation of nanofibers with the desired properties were found to be 7.5/1.5 and 10.0/1.5. The fibers had diameters ranging from 60 to 500 nm, where higher PVA and SS concentrations promoted larger diameters. The crystallinity within the fibers could be controlled by manipulation of the balance between PVA and SS loadings. In vitro degradation (in phosphate buffer solution, pH 7.4 at 37 °C) was 30–50% within 42 days and fibers were shown to be nontoxic to skin fibroblast cells. This work demonstrates a new green route for incorporating SS into nanofibrous fabrics, with potential use in biomedical applications. © 2019 Society of Chemical Industry  相似文献   
4.
The dynamic vulcanization of reclaimed‐tire rubber (RTR) and homopolypropylene (PP) was performed by melt‐mixing using either a sulfur crosslinking agent, maleic anhydride (MA), dicumyl peroxide (DCP), or the combination of MA and DCP, in two consecutive machines, first a two‐roll mill and then a counterrotating twin‐screw extruder. In the case of applying a sulfur crosslinking agent, it was demonstrated that the RTR/PP blend at the ratio of 30/70 had the highest impact strength. This could be attributed to the limitation of carbon black in the blend. When the combination of MA and DCP was applied, the result was higher impact strength of the blend at the same ratio. This could be attributed to not only the cohesion between the polymer chains in each phase, PP phase and rubber phase, but also the interfacial adhesion between PP and RTR chains in these two phases. For comparison, the GRT/PP blends with and without sulfur crosslinking agent were prepared as well. All these blends showed low impact strength, which was nearly the same as that of PP. The effects of different crosslinking agents on dispersion and distribution of rubber domain size, viscosity, and percentage crystallinity were also studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 510–515, 2004  相似文献   
5.
The effects of stereo‐regularity and molecular weight of poly(lactic acid) (PLA) on ternary polymer blends was analyzed using optical clarity as the primary screening method. This enabled the ready identification of phase boundaries of optically clear and apparently miscible regions. Solvent‐mediated blends of amorphous poly(dl ‐lactide) (PDLLA) and semi‐crystalline poly(l ‐lactide) (PLLA) with various molecular weights from high to low, along with polycaprolactone (PCL) and cellulose acetate butyrate (CAB) were used in this study. The nature and extent of crystallinity of the blends was examined by X‐ray diffraction, which, in conjunction with differential scanning calorimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy, provided information about the competition between polymer crystallization (self‐aggregating behavior) and intermixing of the macromolecules. Thus, allowing the primary physical cause of transparency loss to be identified. The results of the ternary blends optical clarity showed the position of the phase boundaries in PLLA/PCL/CAB and PDLLA/PCL/CAB blends are significantly affected by the stereo‐regularity and molecular weight of PLA. The PDLLA (amorphous) blend shows comparable regions of phase separation with high molecular weight and semi‐crystalline PLLA blends even though the molecular weight is much lower. The blends of the shorter chain PLLA1 tend to show more crystalline regions. The optical transparency, miscibility, and crystallinity of the blends are not only affected by the stereo‐regularity and molecular weight of PLA but also the crystallizable PCL, especially at high loading. These findings give useful information to the film‐packaging sector where good optical clarity is a critical performance requirement. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41780.  相似文献   
6.
Geothermal exploration work in Fang area began in 1977 when the BRGM and Geowatt of France and EGAT agreed to collaborate on a feasibility study of electric energy production in Fang geothermal area. Twelve exploration wells (FGTE series) and eight slim holes (BH series) have been drilled and produce hot water at 105°C, 0.4 bars at a discharge rate of up to 14 l/s. Exploration well testing and the economic study is to be conducted as part of the next cooperation programme of AFME and EGAT during late 1985 - early 1986. The first 100–300 kWe demonstration plant is planned to be installed by the end of Fiscal Year 1986. The future of the development programme depends on the success of this demonstration plant.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号