首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16997篇
  免费   1591篇
  国内免费   609篇
工业技术   19197篇
  2024年   52篇
  2023年   242篇
  2022年   439篇
  2021年   709篇
  2020年   517篇
  2019年   494篇
  2018年   562篇
  2017年   612篇
  2016年   622篇
  2015年   687篇
  2014年   902篇
  2013年   1119篇
  2012年   1159篇
  2011年   1219篇
  2010年   1059篇
  2009年   1072篇
  2008年   942篇
  2007年   894篇
  2006年   777篇
  2005年   642篇
  2004年   589篇
  2003年   503篇
  2002年   596篇
  2001年   495篇
  2000年   386篇
  1999年   332篇
  1998年   295篇
  1997年   211篇
  1996年   204篇
  1995年   166篇
  1994年   157篇
  1993年   79篇
  1992年   68篇
  1991年   67篇
  1990年   61篇
  1989年   48篇
  1988年   30篇
  1987年   29篇
  1986年   35篇
  1985年   17篇
  1984年   9篇
  1983年   7篇
  1982年   9篇
  1981年   6篇
  1980年   10篇
  1977年   12篇
  1976年   10篇
  1975年   9篇
  1974年   6篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The exploitation of recycled carbonaceous catalysts from renewable biomass resources such as chitin is a crucial issue for the development of the sustainable society. In this article, the chitin-based N and O doped carbon microspheres (ChC) were fabricated by a simple dissolution, sol–gel transformation, and the carbonization methods. Subsequently, the novel magnetic Ag-Fe3O4@chitin-based carbon microspheres catalyst (MChC) was successfully constructed through the in situ redox reaction. The as-prepared MChC possessed rich micropores with high-surface area, and a narrow size distribution (50–120 μm). The Ag-Fe3O4 nanoparticles were immobilized through the interaction with C, N, and O atoms in the pores of MChC. The reduction of 4-nitrophenol was applied to evaluate the catalytic activity of MChC. 4-Nitrophenol (4-NP) could be fully reduced to 4-aminophenol (4-AP) in 5 min with the catalyst MChC-45. Moreover, MChC could be collected in solution with an external magnet in 8 s and remained relatively high-catalytic activity after 10 cycle times. This work provided novel ideas for the fabrication of doped carbon material from biomass and promoted its utilization in nanocatalytic applications.  相似文献   
3.
A recent development in tactile technology enables an improvement in the appreciation of the visual arts for people with visual impairment (PVI). The tactile sense, in conjunction with, or a possibly as an alternative to, the auditory sense, would allow PVIs to approach artwork in a more self‐driven and engaging way that would be difficult to achieve with just an auditory stimulus. Tactile colour pictograms (TCPs), which are raised geometric patterns, are ideographic characters that are designed to enable PVIs to identify colours and interpret information by touch. In this article, three TCPs are introduced to code colours in the Munsell colour system. Each colour pattern consists of a basic cell size of 10 mm × 10 mm to represent the patterns consistently in terms of regular shape. Each TCP consists of basic geometric patterns that are combined to create primary, secondary, and tertiary colour pictograms of shapes indicating colour hue, intensity and lightness. Each TCP represents 29 colours including six hues; they were then further expanded to represent 53 colours. Two of them did not increase the cell size, the other increased the cell size 1.5 times for some colours, such as yellow‐orange, yellow, blue, and blue‐purple. Our proposed TCPs use a slightly larger cell size compared to most tactile patterns currently used to indicate colour, but code for more colours. With user experience and identification tests, conducted with 23 visually impaired adults, the effectiveness of the TCPs suggests that they were helpful for the participants.  相似文献   
4.
伴随着我国社会经济的稳固发展,人们的生活质量逐渐有了明显改善,而在生态问题趋于严重使人们的环境保护意识显著提高的过程中,森林抚育对于森林生态系统的作用和价值愈发凸显。对此,文章针对森林抚育,从提高森林利用率、维持森林动植物生态平衡、增加可利用水资源等多个方面就其对森林生态系统的影响进行了分析,旨在给予相关森林保护工作者可行的帮助,并以此促进我国森林开发工作的可持续发展。  相似文献   
5.
Engineering novel Sn-based bimetallic materials could provide intriguing catalytic properties to boost the electrochemical CO2 reduction. Herein, the first synthesis of homogeneous Sn1−xBix alloy nanoparticles (x up to 0.20) with native Bi-doped amorphous SnOx shells for efficient CO2 reduction is reported. The Bi-SnOx nanoshells boost the production of formate with high Faradaic efficiencies (>90%) over a wide potential window (−0.67 to −0.92 V vs RHE) with low overpotentials, outperforming current tin oxide catalysts. The state-of-the-art Bi-SnOx nanoshells derived from Sn0.80Bi0.20 alloy nanoparticles exhibit a great partial current density of 74.6 mA cm−2 and high Faradaic efficiency of 95.8%. The detailed electrocatalytic analyses and corresponding density functional theory calculations simultaneously reveal that the incorporation of Bi atoms into Sn species facilitates formate production by suppressing the formation of H2 and CO.  相似文献   
6.
7.
Evaluation of kinetic distribution and behaviors of nanoparticles in vivo provides crucial clues into their roles in living organisms. Extracellular vesicles are evolutionary conserved nanoparticles, known to play important biological functions in intercellular, inter‐species, and inter‐kingdom communication. In this study, the first kinetic analysis of the biodistribution of outer membrane vesicles (OMVs)—bacterial extracellular vesicles—with immune‐modulatory functions is performed. OMVs, injected intraperitoneally, spread to the whole mouse body and accumulate in the liver, lung, spleen, and kidney within 3 h of administration. As an early systemic inflammation response, increased levels of TNF‐α and IL‐6 are observed in serum and bronchoalveolar lavage fluid. In addition, the number of leukocytes and platelets in the blood is decreased. OMVs and cytokine concentrations, as well as body temperature are gradually decreased 6 h after OMV injection, in concomitance with the formation of eye exudates, and of an increase in ICAM‐1 levels in the lung. Following OMV elimination, most of the inflammatory signs are reverted, 12 h post‐injection. However, leukocytes in bronchoalveolar lavage fluid are increased as a late reaction. Taken together, these results suggest that OMVs are effective mediators of long distance communication in vivo.  相似文献   
8.
9.
The cover image is based on the Research Article V2O5/RGO/Pt nanocomposite on oxytetracycline degradation and pharmaceutical effluent detoxification by Mohan, H et al., DOI: 10.1002/jctb.6238 .

  相似文献   

10.
Lithium-sulfur batteries (LSBs) are considered a promising next-generation energy storage device owing to their high theoretical energy density. However, their overall performance is limited by several critical issues such as lithium polysulfide (PS) shuttles, low sulfur utilization, and unstable Li metal anodes. Despite recent huge progress, the electrolyte/sulfur ratio (E/S) used is usually very high (≥20 µL mg−1), which greatly reduces the practical energy density of devices. To push forward LSBs from the lab to the industry, considerable attention is devoted to reducing E/S while ensuring the electrochemical performance. To date, however, few reviews have comprehensively elucidated the possible strategies to achieve that purpose. In this review, recent advances in low E/S cathodes and anodes based on the issues resulting from low E/S and the corresponding solutions are summarized. These will be beneficial for a systematic understanding of the rational design ideas and research trends of low E/S LSBs. In particular, three strategies are proposed for cathodes: preventing PS formation/aggregation to avoid inadequate dissolution, designing multifunctional macroporous networks to address incomplete infiltration, and utilizing an imprison strategy to relieve the adsorption dependence on specific surface area. Finally, the challenges and future prospects for low E/S LSBs are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号