首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51914篇
  免费   4918篇
  国内免费   2952篇
工业技术   59784篇
  2024年   165篇
  2023年   871篇
  2022年   1565篇
  2021年   2359篇
  2020年   1784篇
  2019年   1378篇
  2018年   1564篇
  2017年   1666篇
  2016年   1515篇
  2015年   2151篇
  2014年   2631篇
  2013年   3090篇
  2012年   3705篇
  2011年   3840篇
  2010年   3569篇
  2009年   3338篇
  2008年   3150篇
  2007年   3168篇
  2006年   2937篇
  2005年   2566篇
  2004年   1774篇
  2003年   1444篇
  2002年   1438篇
  2001年   1166篇
  2000年   1240篇
  1999年   1160篇
  1998年   848篇
  1997年   741篇
  1996年   679篇
  1995年   530篇
  1994年   435篇
  1993年   324篇
  1992年   270篇
  1991年   170篇
  1990年   129篇
  1989年   126篇
  1988年   91篇
  1987年   52篇
  1986年   43篇
  1985年   22篇
  1984年   23篇
  1983年   12篇
  1982年   14篇
  1981年   11篇
  1980年   10篇
  1979年   5篇
  1978年   3篇
  1969年   1篇
  1959年   8篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 267 毫秒
1.
2.
Covalent organic frameworks (COFs) show advantageous characteristics, such as an ordered pore structure and a large surface area for gas storage and separation, energy storage, catalysis, and molecular separation. However, COFs usually exist as difficult-to-process powders, and preparing continuous, robust, flexible, foldable, and rollable COF membranes is still a challenge. Herein, such COF membranes with fiber morphology for the first time prepared via a newly introduced template-assisted framework process are reported. This method uses electrospun porous polymer membranes as a sacrificial large dimension template for making self-standing COF membranes. The porous COF fiber membranes, besides having high crystallinity, also show a large surface area (1153 m2 g−1), good mechanical stability, excellent thermal stability, and flexibility. This study opens up the possibility of preparation of large dimension COF membranes and their derivatives in a simple way and hence shows promise in technical applications in separation, catalysis, and energy in the future.  相似文献   
3.
Recently, the successful synthesis of wafer-scale single-crystal graphene, hexagonal boron nitride (hBN), and MoS2 on transition metal surfaces with step edges boosted the research interests in synthesizing wafer-scale 2D single crystals on high-index substrate surfaces. Here, using hBN growth on high-index Cu surfaces as an example, a systematic theoretical study to understand the epitaxial growth of 2D materials on various high-index surfaces is performed. It is revealed that hBN orientation on a high-index surface is highly dependent on the alignment of the step edges of the surface as well as the surface roughness. On an ideal high-index surface, well-aligned hBN islands can be easily achieved, whereas curved step edges on a rough surface can lead to the alignment of hBN along with different directions. This study shows that high-index surfaces with a large step density are robust for templating the epitaxial growth of 2D single crystals due to their large tolerance for surface roughness and provides a general guideline for the epitaxial growth of various 2D single crystals.  相似文献   
4.
With co-substitution of (Li0.5Sm0.5) at A site and W at B site, the electrical properties of modified Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2-xWxO9 [(CLS)BN-xW, x = 0, 0.015 and 0.03] piezoceramics with ultrahigh Curie temperature (TC) of > 930 °C were enhanced dramatically. The increased resistivity induced by the co-substitution ensure them to be polarized under an enough high field. Combined with the increase of spontaneous ferroelectric polarization (PS), the significant enhancements in the piezoelectric, dielectric and ferroelectric properties can be obtained in the composition x = 0.015. Furthermore, the piezoelectric activity (d33) and bulk resistivity (ρb) of (CLS)BN-0.015 W can be further enhanced at an appropriate sintering temperature. This optimum composition sintered at 1170 °C shows ultrahigh TC of ~948 °C, d33 of ~17.3 pC/N and ρb of ~6.9 MΩ cm at 600 °C, which are comparable to those of the reported high-temperature Aurivillius piezoceramics with TC > 850 °C.  相似文献   
5.
A novel CdS/CaFe2O4 (CS/CFO) heterogeneous p-n junction was created by thermal deposition of CaFe2O4 nanoparticles on CdS rods. The CS/CFO hetero-structured photocatalysts exhibited increasingly efficient visible light harvesting compared to the bare CdS. The CS/CFO composites also presented higher photocurrent and slower decay of photoluminescence, suggesting a better separation of the photo-generated electrons and holes. The photocatalytic H2 evolution quantity on the optimized CS/CFO composite from water in the presence of ethanol was up to 2200 μmol after 3-h visible light illumination, which is more than twice that of the pristine CdS. The chemical interaction between CdS and CaFe2O4 was confirmed by the shifts in the XPS peaks, which made it possible for the charge carriers to transfer across the p-n junction interface. This research highlights the importance of forming an interfacial p-n heterojunction between two semiconductors for efficient charge separation and improved photocatalytic performance.  相似文献   
6.
7.
茯砖茶发酵、干燥过程中,烘房内温湿度稳定性和能源系统低能耗是保证茯砖茶品质与成本的重要因素。本文采用TRNSYS仿真与实验研究相结合的方法,对咸阳某茯砖茶厂实际使用的空气源热泵系统进行建模,通过研究各季节典型代表月烘房温湿度的波动情况,确定该空气源热泵系统在全年的运行状态是否满足工艺要求,在此基础上,对比了该系统在全年可运行季节代表月与该生产厂房早期使用的燃气锅炉系统的能耗仿真结果,对空气源热泵系统的节能与环保特性进行研究。结果表明:由于夏季送风质量流量过大且室外空气含湿量较高,7月烘房温湿度不满足工艺要求。热泵系统在1、4、10月的总标煤消耗量的平均值是锅炉系统的44.42%,平均CO2、SO2、NOx排放量分别为锅炉系统的34.13%、44.1%、40.60%。在茯砖茶发酵、干燥的过程中,相比于燃气锅炉系统,空气源热泵系统具有更好的节能与环保特性。  相似文献   
8.
The exploitation of recycled carbonaceous catalysts from renewable biomass resources such as chitin is a crucial issue for the development of the sustainable society. In this article, the chitin-based N and O doped carbon microspheres (ChC) were fabricated by a simple dissolution, sol–gel transformation, and the carbonization methods. Subsequently, the novel magnetic Ag-Fe3O4@chitin-based carbon microspheres catalyst (MChC) was successfully constructed through the in situ redox reaction. The as-prepared MChC possessed rich micropores with high-surface area, and a narrow size distribution (50–120 μm). The Ag-Fe3O4 nanoparticles were immobilized through the interaction with C, N, and O atoms in the pores of MChC. The reduction of 4-nitrophenol was applied to evaluate the catalytic activity of MChC. 4-Nitrophenol (4-NP) could be fully reduced to 4-aminophenol (4-AP) in 5 min with the catalyst MChC-45. Moreover, MChC could be collected in solution with an external magnet in 8 s and remained relatively high-catalytic activity after 10 cycle times. This work provided novel ideas for the fabrication of doped carbon material from biomass and promoted its utilization in nanocatalytic applications.  相似文献   
9.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
10.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号