首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   5篇
工业技术   74篇
  2021年   2篇
  2019年   5篇
  2018年   3篇
  2017年   1篇
  2016年   7篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   14篇
  2011年   10篇
  2010年   9篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2002年   2篇
  1987年   1篇
排序方式: 共有74条查询结果,搜索用时 16 毫秒
1.
Supersystems are shown to provide enough computational power to solve complex problems on a real-time basis. In all these systems, the computational parallelism is obtained from multiple processors. Multistage interconnection networks (MINs) play a vital role on the performance of these multiprocessor systems. This paper introduces a new fault-tolerant MIN named as improved extra group network (IEGN). IEGN is designed by existing extra group (EGN) network, which is a regular multipath network with limited fault tolerance. IEGN provides four times more paths between any source–destination pairs compared with EGN. The performance of IEGN has been evaluated in terms of permutation capability, fault tolerance, reliability, path length, and cost. It has also been proved that the IEGN can achieve better results in terms of fault tolerance, reliability, path length and cost-effectiveness, in comparison to known networks, namely, EGN, augmented baseline network, augmented shuffle-exchange network, fault-tolerant double tree, Benes network, and Replicated MIN.  相似文献   
2.
The present paper strives for optimization of the cooling system of a liquid‐propellant engine (LPE). To this end, the new synthetic metamodel methodology utilizing the design of experiment method and the response surface method was developed and implemented as two effective means of designing, analyzing, and optimizing. The input variables, constraints, objective functions, and their surfaces were identified. Hence, the design and development strategy of combustion chamber and nozzle was clarified, and 64 different experiments were carried out on the RD‐161 propulsion system, of which 47 experiments were approved and compatible with the problem constraints. This engine used all three modes of cooling: the radiation cooling, the regenerative cooling, and the film cooling. The response surface curves were drawn and the related objective function equations were obtained. The analysis of variance results indicate that the developed synthetic model is capable to predict the responses adequately within the limits of input parameters. The three‐dimensional response surface curves and contour plots have been developed to find out the combined effects of input parameters on responses. In addition, the precision of the models was assessed and the output was interpreted and analyzed, which showed high accuracy. Therefore, the desirability function analysis has been applied to LPE's cooling system for multiobjective optimization to maximize the total heat transfer and minimize the cooling system pressure loss simultaneously. Finally, confirmatory tests have been conducted with the optimum parametric conditions to validate the optimization techniques. In conclusion, this methodology optimizes the LPE's cooling system, a 2% increase in the total heat transfer, and a 38% decrease in the pressure loss of the cooling system. These values are considerably large for the LPE design.  相似文献   
3.
Silver doped-bioactive glass coatings offer the possibility of bioactivation, corrosion protection and infection prevention of metallic implants. A certain composition of glass (54SiO2–36CaO–8P2O5–2Ag2O (wt %)) was coated on titanium substrate using dip coating method by 1 cm/min withdrawal rate with controlling the effective factors like viscosity of sol, matching thermal expansion coefficient (a), heating rate and etc., then heated at 700°C for 1h at the rate of 3°C/min. Scanning electron microscopy (SEM) depicted a crack-free and homogeneous coating. The energy dispersive X-ray spectroscopy corresponding to the SEM image affirmed the presence of Si, P, Ca and Ag as main elements of Ag-BG coating. Contact angle measurement confirmed positive effect of silver on the wettability and adhesion of Ag-BG on the Ti surface. X-ray Diffraction analysis confirmed the amorphous nature of Ag-BG. Fourier transform infrared spectroscopy confirmed successful inclusion of silver in glass structure. X-ray Fluorescence Spectroscopy demonstrated that composition of Ag-BG was very close to the designed composition. Results of acellular in vitro bioactivity test showed formation of ball-like particles including a layer of entangled rough apatite crystals on the surface.  相似文献   
4.
In this study, a new class of bioactive glass scaffolds was prepared through freeze casting method for bone tissue engineering applications. After analyzing the structural characteristics of the scaffolds, in vitro biological evaluations were assessed through monitoring alkaline phosphatase (AP) activity of osteoblast cells and soaking in simulated body fluid (SBF) for different time intervals. It was shown that the scaffolds consisted of bioactive glass plates with interconnected pores between them, aligned along the ice growth direction. The ability of the scaffolds for supporting the growth of human fetal osteoblastic cells (hFOB 1.19) was approved. Moreover, inductively coupled plasma-atomic emission spectrometry (ICP-AES) showed meaningful compositional changes of calcium, phosphorus and silicon in SBF solution, indicating the apatite forming ability of the scaffolds. The present investigation revealed that freeze casting could be an effective method for the preparation of highly bioactive scaffolds. In addition, the scaffolds proved to be highly compatible for the proposed works in vivo.  相似文献   
5.
In this work, a biosensor was developed for the determination of sulfite. The bioelectrochemical response of the enzyme-modified electrode based on electrochemical incorporation of sulfite oxidase into polyaniline aluminum modified electrode was investigated. Electropolymerization of polyaniline and simultaneous immobilization of sulfite oxidase on the aluminum were performed in an aqueous solution containing sulfite oxidase. The sulfite biosensor constructed by cycling the potential scan between +1.2 and ?0.5 V vs. saturated calomel electrode (SCE) that showed a sensitive response to sulfite with a linear calibration graph in the concentration ranges of 0.006–5 mM sulfite and detection limit 0.002 mM sulfite (S/N = 3). The obtained results from the stability tests of the biosensor show that the sulfite biosensor can be used for two different applications, for immediate usage and long term usage. Also, the bioelectrochemical response of the enzyme-modified electrode as a sulfite biosensor was evaluated at different experimental conditions. The optimum pH when using phosphate buffer and temperature were 8.5 and 35 °C, respectively. Finally, the apparent Michaelis–Menten constant was determined which has value of 0.365 mM which is really close to the magnitude of the Michaelis–Menten constant of free sulfite oxidase that shows the enzyme was not chemically modified and has its usual kinetic reaction.  相似文献   
6.
Activation methods and curing regimes have crucial effects on the strength of mortars and concretes. The objective of this investigation is to examine the early and later compressive strength of activated ordinary Portland cement (OPC)–ground granulated blast-furnace slag (GGBFS) mortars and identify the most effective activation technique. The methods of activation used were thermal, mechanical and thermal–mechanical combined. Two curing regimes were adopted and five groups of mortars were prepared. It was observed that OPC–GGBFS mortars have greater sensitivity to OPC mortars against the curing regimes. However, the study revealed that there was no particular activation method which when used gave the best results for both early and later strengths and did not cause strength loss. It also proved that the most effective activation method for early strength is a combination of both the thermal and mechanical, while for later strengths, none of the activation methods was recommended.  相似文献   
7.
Nowadays repairing and regenerating of lost or damaged tissue still remain an important challenge in clinical techniques. Due to the variety of available bone grafts, different types of biodegradable materials are being utilized as a scaffold implant. The basic structure of the bone is an excellent natural composite which contains varieties of polymers and ceramics; therefore, it is important to manufacture a bone scaffold featuring sufficient mechanical strength, a good degree of biocompatibility, biodegradation and an increased rate of formation of new tissue. Bioactive glass has an appealing characteristic which can be utilized for repairing purposes as well as to cause a rapid response from the bone graft. In this study, a composite scaffold based on polymer matrix (gelatin-chitosan) and bioactive glass 58s was synthesized in the laboratory. Five samples of polymer scaffold with different proportions of bioactive glass were designed and investigated. The scaffolds were dried with freeze dryer, and a spongy structure was generated. The composite survey was carried out through FTIR technique to examine the crystallization of the structure, XRD to examine the morphology of the porosities, and SEM to examine the size of porosities and formation of apatite. This study reveals that the size of porosities is about 170–320 μm, which is suitable for angiogenesis and cell growth in the bone. The combination of enhanced properties and the formation of apatite on the surface of the scaffolds make them an ideal option as a bone substitute.  相似文献   
8.
Titanium alloy (Ti6A14V) substrates, having the ability of biomimetic calcium phosphate-based materials, especially hydroxyapatite deposition in a simulated body fluid (SBF) means of chemical treatment (alkaline treatment) and subsequent heat treatment, was studied. The effects of alkaline treatment time, concentration and heat treatment temperature on the formation of calcium phosphate (carbonate-hydroxyapatite) on Ti6A14V surface were examined. For this purpose, the metallic substrates were treated in 0, 5 and 10 M NaOH solutions at a temperature of 60 or 80°C for 1 and 3 days. Subsequently the substrate was heat-treated at 500, 600 and 700°C for 1 h for consolidation of the sodium titanate hydrogel layer. Finally, they were soaked in SBF for 1 and 3 days. The substrate surfaces were characterized by the techniques commonly used for bulk material such as scanning electron microscopy (SEM) and thin film X-ray diffraction (TF-XRD). With regard to the SEM and TF-XRD results, the optimum process consists of 3 days soaking in 5 M NaOH in 80°C and subsequent heat treatment at 600°C for 1h. It is worth mentioning that the results showed that the apatite formed within 3 days on the specimen surfaces, however, there was no sign of apatite formation in the control samples (without alkaline and heat treatment) which was treated for up to 3 days immersion in SBF.  相似文献   
9.
Silicon-substituted hydroxyapatite (Si-HA) with up to 1.8 wt% Si content was prepared successfully by a hydrothermal method, using Ca(NO3)2, (NH4)3PO4 or (NH4)2HPO4 and Si(OCH2CH3)4 (TEOS) as starting materials. Silicon has been incorporated in hydroxyapatite (HA) lattice by partially replacing phosphate (PO43−) groups with silicate (SiO44−) groups resulting in Si-HA described as Ca10(PO4)6−x(SiO4)x(OH)2−x. X-ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), inductively coupled plasma AES (ICP-AES) and scanning electron microscopy (SEM) techniques reveal that the substitution of phosphate groups by silicate groups causes some OH loss to maintain the charge balance and changes the lattice parameters of HA. The crystal shape of Si-HA has not altered compared to silicon-free reference hydroxyapatite but Si-incorporation reduces the size of Si-HA crystallites. Based on in vitro tests, soaking the specimens in simulated body fluid (SBF), and MTT assays by human osteoblast-like cells, Si-substituted hydroxyapatite is more bioactive than pure hydroxyapatite.  相似文献   
10.
In this paper, solvothermal synthesis of submicron nanocrystalline Y2O3: Eu particles with and without surface modifier (β-alanine and Tween-80) is investigated. X-ray diffraction ananlysis confirms the one-step formation of Y2(OH)5NO3H2O phase during solvothermal process and its conversion to Y2O3: Eu after heat treatment at 600 °C. Fourier transformation infrared spectroscopy showed that C=C, C–C and C–H peaks are corresponded to the surface modifiers i.e. tween-80 and β-alanine. Scanning electron microscopy and transmission electron microscopy images also showed that the modifier results in the particle morphology improvement from sheet-like to submicron spherical particles. Photoluminescence experiments indicated that the emission intensity increases due to the morphology modification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号