首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   2篇
工业技术   73篇
  2021年   2篇
  2019年   2篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2012年   6篇
  2011年   12篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   6篇
  2004年   8篇
  2003年   2篇
  2002年   3篇
  1999年   1篇
  1998年   1篇
  1997年   5篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
排序方式: 共有73条查询结果,搜索用时 46 毫秒
1.
2.
Using a combination of block copolymer self-assembly and non-solvent induced phase separation, isoporous ultrafiltration membranes were fabricated from four poly(isoprene-b-styrene-b-4-vinylpyridine) triblock terpolymers with similar block volume fractions but varying in total molar mass from 43 kg/mol to 115 kg/mol to systematically study the effect of polymer size on membrane structure. Small-angle X-ray scattering was used to probe terpolymer solution structure in the dope. All four triblocks displayed solution scattering patterns consistent with a body-centered cubic morphology. After membrane formation, structures were characterized using a combination of scanning electron microscopy and filtration performance tests. Membrane pore densities that ranged from 4.53 × 1014 to 1.48 × 1015 pores/m2 were observed, which are the highest pore densities yet reported for membranes using self-assembly and non-solvent induced phase separation. Hydraulic permeabilities ranging from 24 to 850 L m2 h−1 bar−1 and pore diameters ranging from 7 to 36 nm were determined from permeation and rejection experiments. Both the hydraulic permeability and pore size increased with increasing molar mass of the parent terpolymer. The combination of polymer characterization and membrane transport tests described here demonstrates the ability to rationally design macromolecular structures to target specific performance characteristics in block copolymer derived ultrafiltration membranes.  相似文献   
3.
The role of estrogen and the estrogen receptor (ER) in the induction and promotion of tumors was investigated by using transgenic MT-mER mice, which overexpress the ER. It was hypothesized that because of this abnormal expression of the ER, the reproductive-tract tissues of the MT-mER mice may be more susceptible to tumors after neonatal exposure to the potent synthetic estrogen diethylstilbestrol (DES). Normally non-estrogen responsive tissues that may have expressed ER as a result of the transgene were also studied for DES-induced tumors. Wild-type and MT-mER littermates were treated with 2 micrograms/pup/d DES 1-5 d after birth and then killed at 4, 8, 12, and 18 mo of age. The DES-treated MT-mER mice demonstrated a significantly higher incidence of uterine adenocarcinoma at 8 mo (73%) than the DES-treated wild-type mice (46%). The tumors of the MT-mER mice were often more aggressive than those in the wild-type animals. These tumors were also preceeded at 4 mo by a significantly higher incidence of the preneoplastic lesion atypical hyperplasia in the MT-mER mice (26% compared with 0% in the wild-type mice). Other DES-induced abnormalities were observed at equal rates in the wild-type and MT-mER mice. Although no tumors were observed in untreated wild-type females, a single untreated MT-mER female had uterine adenocarcinoma at 18 mo. These data indicate that the level of ER present in a tissue may also be a determining factor in development of estrogen-responsive tumors.  相似文献   
4.
5.
The transport and deposition (adhesion) kinetics of viable Cryptosporidium parvum oocysts onto ultrapure quartz surfaces in a radial stagnation point flow system were investigated. Utilizing an optical microscope and an image-capturing device enabled real time observation of oocyst deposition behavior onto the quartz surface in solutions containing either monovalent (KCl) or divalent (CaCl2) salts. Results showed a significantly lower oocyst deposition rate in the presence of a monovalent salt compared to a divalent salt. With a monovalent salt, oocyst deposition rates and corresponding attachment efficiencies were relatively low, even at high KCl concentrations where Derjaguin-Landau-Verwey-Overbeek (DLVO) theory predicts the absence of an electrostatic energy barrier. On the other hand, in the presence of a divalent salt, oocyst deposition rates increased continuously as the salt concentration was increased over the entire range of ionic strengths investigated. The unusually low deposition rate in a monovalent salt solution is attributed to "electrosteric" repulsion between the Cryptosporidium oocyst and the quartz surface, most likely due to proteins on the oocyst surface that extend into the solution. It is further proposed that specific binding of calcium ions to the oocyst surface functional groups results in charge neutralization and conformational changes of surface proteins that significantly reduce electrosteric repulsion.  相似文献   
6.
The influence of bacterial growth stage on cell deposition kinetics has been examined using a mutant of Escherichia coli K12. Two experimental techniques--a packed-bed column and a radial stagnation point flow (RSPF) system--were employed to determine bacterial deposition rates onto quartz surfaces over a wide range of solution ionic strengths. Stationary-phase cells were found to be more adhesive than mid-exponential phase cells in both experimental systems. The divergence in deposition behavior was notably more pronounced in the RSPF than in the packed-bed system. For instance, in the RSPF system, the deposition rate of the stationary-phase cells at 0.03 M ionic strength was 14 times greater than that of the mid-exponential cells. The divergence in the packed-bed system was most significant at 0.01 M, where the deposition rate for the stationary-phase cells was nearly 4 times greater than for the mid-exponential cells. To explain the observed adhesion behavior, the stationary and mid-exponential bacterial cells were characterized for their size, surface charge density, electrophoretic mobility, viability, and hydrophobicity. On the basis of this analysis, it is suggested that the stationary cells have a more heterogeneous distribution of charged functional groups on the bacterial surface than the mid-exponential cells, which results in higher deposition kinetics. Furthermore, because the RSPF system enumerates only bacterial cells retained in primary minima, whereas the packed column captures mostly cells deposited in secondary minima, the difference in the stationary and mid-exponential cell deposition kinetics is much more pronounced in the RSPF system.  相似文献   
7.
Rational modification of carbon nanotubes (CNTs) to isolate their specific physical and chemical properties will inform a mechanistic understanding of observed CNT toxicity in bacterial systems. The present study compares the toxicity of commercially obtained multiwalled carbon nanotubes (MWNTs) before and after physicochemical modification via common purification and functionalization routes, including dry oxidation, acid treatment functionalization, and annealing. Experimental results support a correlation between bacterial cytotoxicity and physicochemical properties that enhance MWNT-cell contact opportunities. For example, we observe higher toxicity when the nanotubes are uncapped, debundled, short, and dispersed in solution. These conclusions demonstrate that physicochemical modifications of MWNTs alter their cytotoxicity in bacterial systems and underline the need for careful documentation of physical and chemical characteristics when reporting the toxicity of carbon-based nanomaterials.  相似文献   
8.
The influence of colloidal fouling and feed water recovery (or concentration factor, CF) on salt rejection of thin-film composite reverse osmosis (RO) and nanofiltration (NF) membranes was investigated. Fouling experiments were carried out using a laboratory-scale crossflow test unit with continuous permeate disposal to simulate the CF and recovery as commonly observed in full-scale RO/NF systems. For feed waters containing only salt (NaCl), permeate flux declined linearly as CF was increased and salt rejection was nearly constant for both RO and NF membranes. On the other hand, a sharp decrease in permeate flux and significant decline in salt rejection with increasing CF were observed under conditions where colloidal fouling takes place. For both RO and NF membranes, the marked permeate flux decline was attributed to the so-called “cake-enhanced osmotic pressure”. The decline in salt rejection when colloidal fouling predominated was much more substantial for NF than for RO membranes. In all cases, the decline in salt rejection was higher under conditions of more severe colloidal fouling, namely at higher ionic strength and initial permeate flux.  相似文献   
9.
Organic fouling of reverse osmosis (RO) membranes and its relation to foulant--foulant intermolecular adhesion forces has been investigated. Alginate and Suwannee River natural organic matter were used as model organic foulants. Atomic force microscopy was utilized to determine the adhesion force between bulk organic foulants and foulants deposited on the membrane surface under various solution chemistries. The measured adhesion force was related to the RO fouling rate determined from fouling experiments under solution chemistries similar to those used in the AFM measurements. A remarkable correlation was obtained between the measured adhesion force and the fouling rate under the solution chemistries investigated. Fouling was more severe at solution chemistries that resulted in larger adhesion forces, namely, lower pH, higher ionic strength, presence of calcium ions (but not magnesium ions), and higher mass ratio of alginate to Suwannee River natural organic matter. The significant adhesion force measured with alginate in the presence of calcium ions indicated the formation of a crossed-linked alginate gel layer during fouling through intermolecular bridging among alginate molecules.  相似文献   
10.
The early stage aggregation kinetics of bare and alginate-coated hematite nanoparticles are acquired through time-resolved dynamic light scattering (DLS). Varying concentrations of monovalent (NaCl) and divalent (MgCl2 and CaCl2) electrolytes are employed to induce aggregation. In the presence of NaCl and MgCl2, the alginate-coated hematite nanoparticles undergo aggregation through electrostatic destabilization as described by the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This is ascertained through examination of the favorable and unfavorable regimes of the stability curves depicting the attachment efficiency as a function of salt concentration. Additional evidence may be found in the aggregation kinetics of alginate-coated particles, which, under favorable aggregation conditions, are reasonably close to that of bare hematite nanoparticles. However, in the presence of CaCl2, the aggregate growth rate of alginate-coated hematite nanoparticles is much higher than that which conventional diffusive aggregation predicts. Dispersed hematite primary particles and lower-order aggregates enmeshed within extended alginate gel networks were observed under transmission electron microscope (TEM). The proposed mechanism for enhanced aggregation suggests an apparent increase in the collision radii of alginate-coated hematite nanoparticles through alginate gel network formation from the particle surface. Additionally, cross-linking between unadsorbed (suspended) alginate macromolecules may form bridges between hematite-alginate gel clusters. It is further established that the presence of background electrolyte NaCl in solution is detrimental to the calcium-induced enhanced aggregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号