首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   8篇
工业技术   113篇
  2023年   1篇
  2022年   14篇
  2021年   15篇
  2020年   5篇
  2019年   6篇
  2018年   4篇
  2017年   8篇
  2016年   7篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   8篇
  2011年   8篇
  2010年   1篇
  2009年   6篇
  2008年   2篇
  2007年   5篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1998年   2篇
  1991年   1篇
排序方式: 共有113条查询结果,搜索用时 11 毫秒
1.
The knowledge of interactions between different molecules is undoubtedly the driving force of all contemporary biomedical and biological sciences. Chemical biology/biological chemistry has become an important multidisciplinary bridge connecting the perspectives of chemistry and biology to the study of small molecules/peptidomimetics and their interactions in biological systems. Advances in structural biology research, in particular linking atomic structure to molecular properties and cellular context, are essential for the sophisticated design of new medicines that exhibit a high degree of druggability and very importantly, druglikeness. The authors of this contribution are outstanding scientists in the field who provided a brief overview of their work, which is arranged from in silico investigation through the characterization of interactions of compounds with biomolecules to bioactive materials.  相似文献   
2.
3.
One of the main goals of recent bioinorganic chemistry studies has been to design and synthesize novel substances to treat human diseases. The promising compounds are metal-based and metal ion binding components such as vanadium-based compounds. The potential anticancer action of vanadium-based compounds is one of area of investigation in this field. In this study, we present five oxovanadium(IV) and dioxovanadium(V) complexes as potential PTP1B inhibitors with anticancer activity against the MCF-7 breast cancer cell line, the triple negative MDA-MB-231 breast cancer cell line, and the human keratinocyte HaCaT cell line. We observed that all tested compounds were effective inhibitors of PTP1B, which correlates with anticancer activity. [VO(dipic)(dmbipy)]·2 H2O (Compound 4) and [VOO(dipic)](2-phepyH)·H2O (Compound 5) possessed the greatest inhibitory effect, with IC50 185.4 ± 9.8 and 167.2 ± 8.0 nM, respectively. To obtain a better understanding of the relationship between the structure of the examined compounds and their activity, we performed a computer simulation of their binding inside the active site of PTP1B. We observed a stronger binding of complexes containing dipicolinic acid with PTP1B. Based on our simulations, we suggested that the studied complexes exert their activity by stabilizing the WPD-loop in an open position and limiting access to the P-loop.  相似文献   
4.
ZnAl2O4 doped with Ti4+ (2%) was synthesized by the hydrothermal method at 220°C at pressure of 25 bars. An average grain size of the as‐prepared sample was 3 nm, the samples with biggest grain size were obtained after annealing at 300°C, 500°C, 600°C, 700°C, and 900°C, diameter of the latter was about 33 nm. IR spectroscopy indicated that ZnAl2O4 was partially inverted. The degree of the inversion decreases with increase in the annealing temperature but increases with increasing Ti4+ content. Absorption and emission spectra as well as emission decay profiles were recorded at 300 and 77 K. The observed spectra are due to charge‐transfer O2??Ti4+ transitions. Color of the emission depends on the nanocrystal size and with increase in its diameter changes from violet to blue, accordingly the absorption bands exhibit redshift. The calculations based on Density Functional Theory confirmed the experimental results. 3d electrons of titanium ions form the bottom of the ZnAl2O4:Ti4+ conduction band, oxygen, aluminum or zinc vacancies create additional levels in the gahnite energy band gap. It was also found that in ZnAl2O4 aluminum or zinc vacancy induces magnetism with relatively high magnetic moment close to 1 μB per vacancy.  相似文献   
5.
Inflammatory bowel diseases (IBD) are commonly considered as Crohn’s disease and ulcerative colitis, but the possibility that the alterations in gut microbiota and oxidative stress may affect the course of experimental colitis in obese physically exercising mice treated with the intestinal alkaline phosphatase (IAP) has been little elucidated. Mice fed a high-fat-diet (HFD) or normal diet (ND) for 14 weeks were randomly assigned to exercise on spinning wheels (SW) for 7 weeks and treated with IAP followed by intrarectal administration of TNBS. The disease activity index (DAI), grip muscle strength test, oxidative stress biomarkers (MDA, SOD, GSH), DNA damage (8-OHdG), the plasma levels of cytokines IL-2, IL-6, IL-10, IL-12p70, IL-17a, TNF-α, MCP-1 and leptin were assessed, and the stool composition of the intestinal microbiota was determined by next generation sequencing (NGS). The TNBS-induced colitis was worsened in obese sedentary mice as manifested by severe colonic damage, an increase in DAI, oxidative stress biomarkers, DNA damage and decreased muscle strength. The longer running distance and weight loss was observed in mice given IAP or subjected to IAP + SW compared to sedentary ones. Less heterogeneous microbial composition was noticed in sedentary obese colitis mice and this effect disappeared in IAP + SW mice. Absence of Alistipes, lower proportion of Turicibacter, Proteobacteria and Faecalibacterium, an increase in Firmicutes and Clostridium, a decrease in oxidative stress biomarkers, 8-OHdG content and proinflammatory cytokines were observed in IAP + SW mice. IAP supplementation in combination with moderate physical activity attenuates the severity of murine colitis complicated by obesity through a mechanism involving the downregulation of the intestinal cytokine/chemokine network and oxidative stress, the modulation of the gut microbiota and an improvement of muscle strength.  相似文献   
6.
Both obesity and esophageal adenocarcinoma (EAC) rates have increased sharply in the United States and Western Europe in recent years. EAC is a classic example of obesity-related cancer where the risk of EAC increases with increasing body mass index. Pathologically altered visceral fat in obesity appears to play a key role in this process. Visceral obesity may promote EAC by directly affecting gastroesophageal reflux disease and Barrett’s esophagus (BE), as well as a less reflux-dependent effect, including the release of pro-inflammatory adipokines and insulin resistance. Deregulation of adipokine production, such as the shift to an increased amount of leptin relative to “protective” adiponectin, has been implicated in the pathogenesis of BE and EAC. This review discusses not only the epidemiology and pathophysiology of obesity in BE and EAC, but also molecular alterations at the level of mRNA and proteins associated with these esophageal pathologies and the potential role of adipokines and myokines in these disorders. Particular attention is given to discussing the possible crosstalk of adipokines and myokines during exercise. It is concluded that lifestyle interventions to increase regular physical activity could be helpful as a promising strategy for preventing the development of BE and EAC.  相似文献   
7.
8.
In this paper, processes occurring during heat treatment of the diamond-Ti compound composites without Co addition were investigated and compared with commercial PCD. Three types of materials were prepared. The first material was sintered using the mixture containing diamond and 10 mass% of TiC, the second material was prepared using diamond powder and 10 mass% of Ti-Si-C, and the third composite was sintered using the addition of 10 mass% of TiB2. During the research, it was proved that TiO2 formation contributes to material swelling and WO3 (W is present from the milling process) causes a significant increase in coefficient of friction. TiC and Ti-Si-C bonded materials are very susceptible to this process of oxidation; their hardness drops absolutely after wear test at 600 °C. The diamond composite with TiB2 is the most resistant to oxidation from investigated materials.  相似文献   
9.
The present study describes a new genus and species Unicohormaphis sorini, which belongs to the subfamily Cerataphidinae. The contemporary distribution of aphids belonging to the Hormaphididae family is summarized and analyzed. According to the obtained data, the climate warming in Eocene was conducive to the expansion of the family over the areas of Europe. Subsequent climate changes, resulting from epeirogenic and orogenic movements towards the end of Eocene, led to a considerable cooling and drying of climate in the northern hemisphere. These processes contributed to the shrinking down of areas covered by subtropical forests, which constituted the habitat of Hormaphididae (Cerataphidinae). Retaining their way of life, the Cerataphidinae were forced to limit their distribution, and the representatives of the family in Europe became completely extinct.  相似文献   
10.
Superoxide dismutases play an important protective role in the lung defense against the pro-oxidative effect of fibrous dusts (e.g. crocidolite fibers). Particularly crocidolite, but also other asbestos fibers, are known to induce cellular antioxidant defense. Although rockwool, a man-made fiber made from rock, is used widely for insulation purposes, its effects on the superoxide dismutases in bronchoepithelial cells have not been investigated. Thus, the purpose of this study was to determine whether human bronchoepithelial cells (BEAS 2B) respond to rockwool fibers (115-4 experimental rockwool fiber) by induction of MnSOD mRNA and an increase of MnSOD activity levels. The results were compared with BEAS 2B cells exposed to silica (alpha-quartz: DQ12; SiO2) and UICC (Union Internationale Contre le Cancer) crocidolite (concentrations of all dusts: 0, 2, 5, 10, 25, 50 micrograms/cm2 = 0, 2.4, 6, 12, 30, 60 micrograms/ml; 24-h exposure) as control fibers. Scanning electron microscopy confirmed close dust cell contact under all experimental settings. Very low MnSOD mRNA baseline levels rose significantly (p < 0.001) in BEAS 2B cells exposed to all three dusts at 2 micrograms/cm2. However, at > 25 micrograms/cm2 MnSOD mRNA levels in silica- and crocidolite- but not in rockwool-exposed cells decreased. Slight (no significance) increases of MnSOD activity were observed which decreased at higher dust (> 5 micrograms/cm2) concentrations. These results suggest that: (1) like crocidolite and silica, rockwool accelerates MnSOD gene expression in bronchoepithelial cells; (2) an increase of MnSOD mRNA levels is not accompanied by MnSOD activity elevation; (3) in contrast to rockwool, high concentrations (> or = 25 micrograms/cm2) of crocidolite and silica reduced MnSOD activity and MnSOD mRNA levels. Because oxidants (H2O2) and crocidolite fibers were shown to reduce SOD activity, lack of active MnSOD protein may be caused by inactivation on a post-translational level. Furthermore, the decline of MnSOD mRNA and MnSOD activity levels coincides with increasing cytotoxicity. In conclusion, rockwool was demonstrated to induce MnSOD gene expression, perhaps because of its pro-oxidative effect in bronchoepithelial cells. In contrast to crocidolite and silica, rockwool fibers are not cytotoxic in this experimental setting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号