首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   3篇
工业技术   87篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   8篇
  2007年   7篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
排序方式: 共有87条查询结果,搜索用时 875 毫秒
1.
The present work summarizes the recent activities of our laboratory in the field of solar-aided hydrogen production with structured monolithic solar reactors. This reactor concept, “transferred” from the well-known automobile exhaust catalytic after-treatment systems, employs ceramic supports optimized to absorb effectively solar radiation and develop sufficiently high temperatures, that are coated with active materials capable to perform/catalyze a variety of “solar-aided” reactions for the production of hydrogen such as water splitting or natural gas reforming. Our work evolves in an integrated approach starting from the synthesis of active powders tailored to particular hydrogen production reactions, their deposition upon porous absorbers, testing of relevant properties of merit such as thermomechanical stability and hydrogen yield and finally to the design, operation simulation and performance optimization of structured monolithic solar hydrogen production reactors. This approach, among other things, has culminated to the world's first closed, solar-thermochemical cycle in operation that is capable of continuous hydrogen production employing entirely renewable and abundant energy sources and raw materials – solar energy and water, respectively – without any CO2 emissions and holds, thus, a significant potential for large-scale, emissions-free hydrogen production, particularly for regions of the world that lack indigenous resources but are endowed with ample solar energy.  相似文献   
2.
Phytosterols and phytostanols (PAP) compete with cholesterol absorption in the intestine, resulting in a 5–15%-reduction in plasma total and LDL cholesterol. An important issue is the PAP potential to reduce the plasma concentrations of fat-soluble vitamins and provitamin A carotenoids. Here, an update of the scientific evidence is reviewed to evaluate plant PAP-enriched foods impact on plasma fat-soluble vitamins and carotenoid levels, and to discuss potential implications in terms of cardiovascular risk. Based on 49 human interventional and 3 bioavailability studies, results showed that regular consumption, particularly over the long term, of foods fortified with PAP as recommended in labeling does not significantly impact plasma vitamins A, D, and K concentration. A 10% significant median reduction was observed for α-tocopherol. Concerning carotenoids, while 13 studies did not demonstrate statistically significant plasma β-carotene reduction, 20 studies showed significant reductions, with median effect size of ?24%. This decline can be mitigated or offset by increased fruits and vegetables consumption. Furthermore, higher cardiovascular risk was observed for differences in plasma β-carotene concentration of the same magnitude as the estimated average decrease by PAP consumption. These results are supported by the only study of β-carotene bioavailability showing decrease in absorption by phytosterols daily intake.  相似文献   
3.
Polyacrylamide‐co‐acrylic acid (PA) added to shake flask cultures of Acetobacter xylinum at concentrations up to 3 g dm?3 resulted in increased production of bacterial cellulose. For PA concentrations of 0–3 g dm?3, 7‐day cellulose production rose monotonically from 2.7 ± 0.8 to 6.5 ± 0.5 g dm?3 at a shaker speed of 175 rpm, and from 1.7 ± 0.01 to 3.7 ± 0.5 g dm?3 at shaker speed of 375 rpm. Addition of PA also changed the morphology of the biomass from amorphous/stringy forms to spheroidal particles with diameters ≤2 mm. Similarly, bioreactor cultures grown in the absence of PA formed long fibrous masses which deposited on the internals, while those grown in the presence of 1–2 g dm?3 PA formed small discrete particles with diameters ≤0.1 mm. Tests performed with 1 and 2 g dm?3 PA, and stirrer speeds from 500 to 900 rpm, appeared to give the highest cellulose concentration of 5.3 ± 0.7 g dm?3 in 64–68.5 h in the presence of 2 g dm?3 PA at 700 rpm, although this value was statistically indistinguishable from that obtained at 1 g dm?3 PA and 900 rpm. A qualitative model is proposed to describe the mechanisms by which PA affects biomass morphology, resulting in its advantageous formation as small, dispersed, spheroidal pellets. Quantitative analysis of the results gave inverse correlations between both the fraction of fructose carbon going to cellulose synthesis and the specific fructose consumption rate, and the maximum cellulose concentration and the fraction of fructose carbon going to by‐product formation. Since cellulose yield was almost universally improved by higher polyacrylamide concentration, it appears likely that increased viscosity reduces fructose uptake rate by limiting mass transfer. Copyright © 2003 Society of Chemical Industry  相似文献   
4.
The compatibility of an ethylene-acrylic rubber (R) with poly (chloroprene) (CR) and two chlorinated poly-ethylenes, containing 48 (CPE 48) and 25 (CPE 25) wt.-% chlorine, was investigated. Blends with the latter polymer were studied in the complete composition range. The techniques used were phase-contrast microscopy, differential scanning calorimetry, dynamic mechanical and stress-strain testing. The single Tg relaxation of blends and its almost linear variation with composition, together with results obtained using the techniques mentioned, support the view that the systems are miscible at the segmental level. At low rubber contents an antiplasticisation effect was observed for the R/CPE 25 system. At high rubber compositions a small reduction of crystallinity and a melting point depression of the PE phase in CPE were observed. Various equations proposed to predict the Tg of blends and their modulus using pure component data were also tested at varying compositions and temperatures.  相似文献   
5.
6.
B. thuringiensis cells evolve from vegetative cells to sporulated cells during batch growth. As a result, the classical model based on an exponential binary fission and the Monod equation has intrinsic limitations to describe the biomass concentration. A new kinetic model accounting for the spore formation process is presented in this study. This model considers that only the cells without a spore are able to contribute to the cell growth. This model also incorporates the spore formation process using a spore formation step and a specific spore formation rate constant. Classical and new model predictions are compared with batch experimental data. Results demonstrate that the classical model is unable to predict the experimental data and this is particularly true from the middle of the transition stage on. In contrast, the new sporulation kinetic model is able to predict the experimental data more accurately for the complete time span of the batch culture.  相似文献   
7.
8.
This paper discusses the modeling framework and identifies a number of parameters relevant when setting up a computational fluid dynamics simulation of a dissolved air flotation (DAF) tank. The selection of a turbulence model, the choice between performing two-dimensional (2D) or three-dimensional (3D) simulations, the effects of the design of the flow geometry and the influence of the size of the air bubbles are addressed in the paper. The two-phase flow of air and water is solved in the Eulerian-Lagrangian frame of reference. The realizable k-ε model with nonequilibrium wall functions is suggested as a compromise between a need to effectively resolve the flow and the cost of the simulations. There is a discussion on the conditions for which the steady-state simulations are appropriate. We demonstrate that a steady 2D model can simulate a stratified flow pattern. Our results show that 2D models require adjustments in geometry (e.g., substitution of the outlet pipes to an outlet distributed over the total width of the tank) and in the parameters governing the flow in order to account for the true 3D nature of some of the flow patterns. In addition, we show that the bubble size has a larger influence on the flow in the separation zone than in the contact zone.  相似文献   
9.
A two‐dimensional model of methane thermal decomposition reactors is developed which accounts for coupled radiative heat and polydisperse carbon particle nucleation, growth, and transport. The model uses the Navier–Stokes equations for the fluid dynamics, the radiative transfer equation for methane and particle species radiation absorption, the advection–diffusion equation for gas and particle species transport, and a sectional method for particle species nucleation, heterogenous growth, and coagulation. The model is applied to a tubular laminar flow reactor. The simulation results indicate the development of a reaction boundary layer inside the reactor, which results in significant variation of the local particle size distribution across the reactor. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2545–2556, 2012  相似文献   
10.
Electromagnetic fields (EMFs) disrupt the electrochemical balance of biological membranes, thereby causing abnormal cation movement and deterioration of the function of membrane voltage-gated ion channels. These can trigger an increase of oxidative stress (OS) and the impairment of all cellular functions, including DNA damage and subsequent carcinogenesis. In this review we focus on the main mechanisms of OS generation by EMF-sensitized NADPH oxidase (NOX), the involved OS biochemistry, and the associated key biological effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号