首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
数理化   7篇
  2013年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Oxidative stress and inflammatory tissue damage are two major events frequently implicated in carcinogenesis. Numerous polyphenolic compounds derived from plants possess antioxidant and anti-inflammatory activities and are hence effective in preventing cancer. Oligonol is a polyphenol formulation enriched with catechin-type oligomers. As an initial approach to assess the chemopreventive potential of oligonol, we have determined its effects on inflammatory as well as oxidative damage in mouse skin irradiated with UVB. Topical application of oligonol onto the dorsal skin of male HR-1 hairless mice 30 min prior to UVB exposure diminished epidermal hyperplasia and formation of 4-hydroxynonenal, a biochemical hallmark of lipid peroxidation. Topical application of oligonol also significantly inhibited UVB-induced cyclooxygenase (COX-2) expression in mouse skin. Oligonol diminished the DNA binding of activator protein-1 (AP-1) and CCAAT/enhancer binding protein (C/EBP), and the expression of C/EBPdelta in mouse skin exposed to UVB. Our study also revealed that oligonol attenuated UVB-induced catalytic activity as well as expression of p38 mitogen-activated protein (MAP) kinase. Moreover, UVB-induced phosphorylation of another upstream kinase Akt was attenuated by oligonol. Taken together, oligonol showed antioxidative and anti-inflammatory effects in UVB-irradiated mouse skin by inhibiting COX-2 expression via blockade of the activation of AP-1 and C/EBP, and upstream kinases including p38 MAP kinase and Akt.  相似文献   
2.
Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard–Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (plane-waves in a box with periodic boundary conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron–ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of fusion ignition plasmas including the important effects of radiation emission and absorption.  相似文献   
3.
4.
Typical numerical simulations of dense plasmas are limited by either an inability to treat the dynamical quantum evolution of the electrons or a difficulty with strongly-coupled ions. Yet these different physics problems are individually well-treated by particular approximations. Kinetic theory molecular dynamics (KTMD) is a hybrid approach that treats electrons via kinetic theory (KT) and ions with molecular dynamics (MD). We present a derivation suitable for classical plasmas and specialize to the Vlasov or mean-field case. In addition, we consider the limit of adiabatic electron dynamics, where the problem reduces to the Poisson–Boltzmann (PB) equations coupled to MD. An exploration of practical ways to implement KTMD within an existing MD framework. The initial goal is to develop computationally efficient solutions of the PB problem, suitable for large-scale PB or Thomas-Fermi MD simulations.  相似文献   
5.
6.
The influence of various emulsifier types (anionic, nonionic, and zwitterionic) on the mean particle size, transmembrane flux, and membrane fouling in repeated membrane homogenization using a Shirasu porous glass (SPG) membrane has been investigated. Oil-in-water (O/W) emulsions (40 wt % corn oil stabilized by 0.06-2 wt % sodium dodecyl sulfate (SDS) or 0.1-2 wt % Tween 20 at pH 3 or 0.5-2 wt % beta-lactoglobulin (beta-Lg) at pH 7) were prepared by passing coarsely emulsified feed mixtures five times through the membrane with a mean pore size of 8.0 microm under the transmembrane pressure of 100 kPa. The flux increased as the number of passes increased, tending to a maximum limiting value. The maximum flux for the Tween 20-stabilized emulsions (5-47 m3.m(-2).h(-1)) was smaller than that for the SDS-stabilized emulsions (29-60 m3.m(-2).h(-1)) because less energy was needed for the disruption of a SDS-stabilized droplet due to the lower interfacial tension. The mean particle size after five passes was 4.1-6.8 and 6.4-8.7 mum for 0.1-2 wt % SDS and Tween 20, respectively. The flux in the presence of beta-Lg was much smaller than that in the presence of SDS and Tween 20, which was a consequence of more pronounced membrane fouling, due to the protein adsorption to the membrane surface. After five passes through the membrane, the fouling resistance in the presence of 2 wt % beta-Lg (1.1 x 10(10) 1/m) was 2 orders of magnitude higher than that for 0.5 wt % Tween 20 and an order of magnitude higher than the membrane resistance. If a clean membrane was used in the fifth pass, a 2-fold reduction of the fouling resistance was observed.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号