首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
航空航天   20篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
  2002年   1篇
  1994年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有20条查询结果,搜索用时 62 毫秒
1.
A properly weighted measure of histogram distortion is proposed to evaluate data with different time scales for any index in any field. This approach is applied to produce a long-term data base of disturbance measure of the geomagnetic indices and ionospheric VI sounding characteristics. It is shown that the ionosphere disturbances detected by the proposed technique include all the storm periods defined by the statistical procedure used earlier at IRPL, NBS, Washington, D.C.  相似文献   
2.
A complete grasp of the actual vessel traffic flow by accurate observation is essential to carry out vessel traffic management, design of vessel traffic route, plan of port construction, etc. Up to now, the observation of vessel traffic has needed many efforts such as the use of a special ship or car equipped with radar observation systems and the observation staff preparation for a considerably long period. In order to perform accurate observation of vessel traffic without such efforts, the authors have developed a completely automated radar network system covering the main traffic route of Tokyo Bay. In August 2003, as the second remote radar station attaching AIS equipment was set at East Ogishima (the first was installed at the National Defense Academy in 2002), the observing range could be enlarged and cover most traffic routes in Tokyo Bay. These two radars can observe the vessel traffic in Tokyo Bay simultaneously so as to know the traffic flow accurately on the basis of analyzing the integrated radar data. In addition to the development of a radar network system, the software to analyze observed vessel traffic flow has been developed. This software has various functions such as tracking of ship's position, automatic determination of ship's size, animation of ship's movements, superposition of successive radar images, display of ship's tracks, calculation of ship's speed distribution, extraction of dangerous ship encounters using subjective judgment value and bumper model, etc. Some analyzed results on vessel traffic flow observed by the remote radars in January and September 2003 are shown in this paper.  相似文献   
3.
The shape of electron density profile in the International Reference Ionosphere could be improved significantly if the height hg and electron density Ng of the F region sub-peak inflexion point were entered in the set of the profile standard parameters. To study variations of these important parameters, the N(h) analysis of the statistically-summarized ionograms at the latitudes of 40–80°N of the Eastern hemisphere has been carried out for the two-hours intervals of local time, three seasons (winter, equinox and summer) and two levels of solar activities characterized by Covington indicesF10.7 = 100 and 200. It is shown that the parameters of the inflexion point can be expressed in most cases via the peak parameters of the F2 layer ashg= 0.8 hmF2 and Ng= 0.5 NmF2.  相似文献   
4.
We present the spatial maps of the ionosphere–plasmasphere slab thickness τ (ratio of the vertical total electron content, TEC, to the F-region peak electron density, NmF2) during the intense ionospheric storms of October–November 2003. The model-assisted technology for estimate of the upper boundary of the ionosphere, hup, from the slab thickness components in the bottomside and topside ionosphere – eliminating the plasmasphere contribution of τ – is applied at latitudes 35° to 70°N and longitudes −10° to 40°E, from the data of 20 observatories of GPS-TEC and ionosonde networks, for selected days and hours of October and November 2003. The daily–hourly values of NmF2, hmF2 and TECgps are used as the constrained parameters for the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, during the ionospheric quiet days, positive and negative storm phases for estimate of τ and hup. Good correlation has been found between the slab thickness and the upper boundary of the ionosphere for the intense ionospheric storms at October–November 2003. During the negative phase of the ionospheric storm, when the ionospheric plasma density is exhausted, the nighttime upper boundary of the ionosphere is greatly uplifted towards the magnetosphere tail, while the daytime upper boundary of the ionosphere is reduced below 500 km over the Earth.  相似文献   
5.
Variations of the ionospheric weather W-index for two midlatitude observatories, namely, Grahamstown and Hermanus, and their conjugate counterpart locations in Africa are studied for a period from October 2010 to December 2011. The observatories are located in the longitude sector, which has consistent magnetic equator and geographic equator so that geomagnetic latitudes of the line of force are very close to the corresponding geographic latitudes providing opportunity to ignore the impact of the difference of the gravitational field and the geomagnetic field at the conjugate points on the ionosphere structure and dynamics. The ionosondes of Grahamstown and Hermanus provide data of the critical frequency (foF2), and Global Ionospheric Maps (GIM) provide the total electron content (TECgps) along the magnetic field line up to the conjugate point in the opposite hemisphere. The global model of the ionosphere, International Reference Ionosphere, extended to the plasmasphere altitude of 20,200 km (IRI-Plas) is used to deliver the F2 layer peak parameters from TECgps at the magnetic conjugate area. The evidence is obtained that the electron gas heated by day and cooled by night at the summer hemisphere as compared with the opposite features in the conjugate winter hemisphere testifies on a reversal of plasma fluxes along the magnetic field line by the solar terminator. The ionospheric weather W-index is derived from NmF2 (related with foF2) and TECgps data. It is found that symmetry of W-index behavior in the magnetic conjugate hemispheres is dominant for the equinoxes when plasma movement along the magnetic line of force is imposed on symmetrical background electron density and electron content. Asymmetry of the ionospheric storm effects is observed for solstices when the plasma diffuse down more slowly into the colder winter hemisphere than into the warmer summer hemisphere inducing either plasma increase (positive phase) or decrease (negative phase of W-index) in the ionospheric and plasmaspheric plasma density.  相似文献   
6.
The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m−2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.  相似文献   
7.
Characteristics and accuracies of the GRACE inter-satellite pointing   总被引:1,自引:0,他引:1  
For almost 10 years, the Gravity Recovery and Climate Experiment (GRACE) has provided information about the Earth gravity field with unprecedented accuracy. Efforts are ongoing to approach the GRACE baseline accuracy as there still remains an order of magnitude between the present error level of the gravity field solutions and the GRACE baseline. At the current level of accuracy, thorough investigation of sensor related effects is necessary as they are one of the potential contributors to the error budget. In the science mode operations, the twin satellites are kept precisely pointed with their KBR antennas towards each other. It is the task of the onboard attitude and orbit control system (AOCS) to keep the satellites in the required formation. We analyzed long time series of the inter-satellite pointing variations as they reflect the AOCS performance and characteristics. We present significant systematic effects in the inter-satellite pointing and discuss their possible sources. Prominent features are especially related to the magnetic torquer characteristics, star cameras’ performance and KBR antenna calibration parameters. The relation between the magnetic torquer attitude control and the Earth magnetic field, impact of the different performance of the two star camera heads on the attitude control and the features due to uncertainties in the calibration parameters relating the star camera frame to K-frame are discussed in detail. Proper understanding of these effects will help to reduce their impact on the science data and subsequently increase the accuracy of the gravity field solutions. Moreover, understanding the complexity of the onboard system is essential not only for increasing the accuracy of the GRACE data but also for the development of the future gravity field satellite missions.  相似文献   
8.
Topside sounding electron density profiles are analyzed to explore interrelations of the F2 layer critical frequency and the peak height for a representative set of conditions provided by ISIS1, ISIS2, IK19 and Cosmos-1809 satellites for the period of 1969–1987. The foF2 and hmF2 are delivered with exponential extrapolation of electron density profile to zero of its 1st derivative. It is shown that the linear regression exists between foF2 and hmF2 under different conditions. The linkage between the two parameters amended to the empirical model of the peak height [Gulyaeva, T.L., Bradley, P.A., Stanislawska, I., Juchnikowski, G. Towards a new reference model of hmF2 for IRI. Adv. Space Res. 42, 666–672, doi:10.1016/j.asr.2008.02.021, 2008] results in an empirical model of the both foF2 and hmF2 expressed by superposition of functions in terms of local-time, season, geodetic longitude, modified dip latitude and solar activity. For the solar activity we use a proxy Fsp index averaged from the mean solar radio flux F10.7s for the past 81 days (3 solar rotations) and F10.7 value for 1 day prior the day of observation. Impact of geomagnetic activity is not discernible with the topside sounding data due to mixed positive and negative storm-time effects. Appreciable differences have been revealed between IRI-CCIR predictions and outcome of the new model which might be attributed to the different techniques of the peak electron density and height derivation, different epochs and different global distribution of the source data as well as the different mathematical functions involved in the maps and the model presentation.  相似文献   
9.
The international reference ionosphere, IRI, and its extension to plasmasphere, IRI-Plas, models require reliable prediction of solar and ionospheric proxy indices of solar activity for nowcasting and forecasting of the ionosphere parameters. It is shown that IRI prediction errors could increase for the F2 layer critical frequency foF2 and the peak height hmF2 due to erroneous predictions of the ionospheric global IG index and the international sunspot number SSN1 index on which IRI and IRI-Plas models are built. Regression relation is introduced to produce daily SSN1 proxy index from new time series SSN2 index provided from June 2015, after recalibration of sunspots data. To avoid extra errors of the ionosphere model a new solar activity prediction (SAP) model for the ascending part of the solar cycle SC25 is proposed which expresses analytically the SSN1 proxy index and the 10.7-cm radio flux F10.7 index in terms of the phase of the solar cycle, Φ. SAP model is based on monthly indices observed during the descending part of SC24 complemented with forecast of time and amplitude for SC25 peak. The strength of SC25 is predicted to be less than that of SC24 as shown with their amplitudes for eight types of indices driving IRI-Plas model.  相似文献   
10.
Accuracy of IRI electron density profile depends on the F2 layer peak density and height converted by empirical formulae from the critical frequency and M3000F2 factor provided by the ITU-R (former CCIR). The CCIR/ITU-R maps generated from ground-based ionosonde measurements suffer from model assumptions, in particular, over the oceans where relatively few measurements are available due to a scarcity of ground-based ionosondes. In the present study a grid-point calibration of IRI/ITU-R maps for the foF2 and hmF2 over the oceans is proposed using modeling results based on the topside true-height profiles provided by ISIS1, ISIS2, IK-19 and Cosmos-1809 satellites for the period of 1969–1987. Topside soundings results are compared with IRI and the Russian standard model of ionosphere, SMI, and grouped to provide an empirical calibration coefficient to the peak density and height generated from ITU-R maps. The grid-point calibration coefficients maps are produced in terms of the solar activity, geodetic latitude and longitude, universal time and season allowing update of IRI–ITU-R predictions of the F2 layer peak parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号