首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  国内免费   2篇
航空航天   13篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 799 毫秒
1.
高超声速飞行器机体/推进一体化设计的启示   总被引:8,自引:2,他引:6  
罗金玲  李超  徐锦 《航空学报》2015,36(1):39-48
机体/推进一体化设计是吸气式高超声速飞行器的关键技术。飞行器的前体和后体既是主要的气动型面,又是发动机进气道的外压缩型面和尾喷管的膨胀型面,一体化设计直接影响飞行器的气动与发动机性能。本文阐述了吸气式高超声速飞行器的主要特点,梳理了飞行器的推阻匹配、升阻比特性、操稳匹配等主要气动设计问题。通过对国外典型高超声速飞行器机体/推进一体化设计技术的综合分析,总结了前体/进气道、后体/尾喷管、边界层强制转捩装置等关键部件的气动设计方法,获得了有意义的启示,可为后续吸气式高超声速技术研究提供重要参考。  相似文献   
2.
临近空间高超声速飞行器大面积区域可能广泛采用纳米酚醛气凝胶(IPC)材料,获取高超声速气动加热作用下IPC材料的高温热物性参数,对于高超声速飞行器热防护系统的精细化设计具有重要的意义。考虑烧蚀效应的材料高温热物性参数辨识方法研究,基于Ablation Workshop烧蚀热响应标准算例对高温热物性参数辨识方法进行验证,计算结果表明:热物性参数辨识分析方法计算精度较高;通过带分层温度/烧蚀传感器的IPC材料电弧风洞试验,得到典型来流状态下不同厚度IPC材料内部的温度分布及热解厚度分布数据,通过辨识获得高温烧蚀条件下IPC材料热导率随温度的变化关系,IPC材料原始层热导率在温度低于800 K时随温度缓慢上升(热导率维持在0.1 W/(m·K)以下),之后材料热解使得热导率发生突变,碳化层热导率在温度高于800 K时随着温度的上升急剧增大,到1 300 K左右时上升到0.17 W/(m·K)。  相似文献   
3.
针对非对称飞行器在稠密大气层内级间分离时喷流干扰下的气动特性问题,采用捕获轨迹试验的网格测力技术和喷流试验技术相结合的试验方法,进行了风洞试验研究,研究了在不同来流马赫数、不同迎角、级间分离时一级与二级不同相对位置以及有无喷流状态下的气动干扰特性.详细论述了模型在风洞中的支撑方式、试验方案、喷流模拟参数的选择等,给出了典型试验结果,并进行了详细分析.结果表明:无喷流时,级间分离过程中的干扰流场使二级飞行器法向力减小,产生抬头俯仰力矩;喷流干扰则使法向力进一步减小,使抬头俯仰力矩进一步增大.试验结果已成功应用于某飞行器飞行试验中,试验数据精度满足工程要求,并被飞行试验验证.  相似文献   
4.
武利龙  操小龙  王靖  周丹杰  罗金玲 《航空学报》2019,40(8):122815-122815
通过脉动压力风洞试验测量,对比分析了跨声速(马赫数介于0.75~1.2)不同锥角和锥长大小的级间段对锥柱外形飞行器局部脉动压力的影响规律。结果表明,肩部脉动压力主要由以低频为主导的激波振荡所致,能量集中在100 Hz左右的窄带区间,且表现为随着马赫数增加,脉动压力系数峰值先增大后减小,并随着肩部激波的后移而不断向后推移。此外,通过对比分析5种不同锥角模型(10°、12.7°、15.3°、20°、25°)的脉动压力系数最大值发现,随着锥角的增加,脉动压力表现出当锥角小于15°时先平缓增加,随着锥角增大脉动压力系数增加幅度进一步加大的趋势。对比分析不同锥长模型的结果发现,锥长对局部脉动压力的最大峰值几乎没有影响,影响的只是脉动压力在肩部作用区域的大小以及峰值出现的马赫数范围,且表现为锥柱级间段越长其作用范围越大,对应于峰值的马赫数区间越宽。  相似文献   
5.
三维内收缩前体/进气道设计参数影响规律研究   总被引:2,自引:0,他引:2  
采用有旋特征线理论求解壁面压力分布可控的内收缩基准流场,再结合流线追踪,设计了五种不同位置的矩形捕获型线的三维内收缩前体/进气道。通过数值模拟,研究了进气道捕获型线的不同径向与周向位置对进气道性能与飞行器前体纵、航向气动性能的影响规律。结果表明:三维内收缩前体/进气道产生了较大的力与力矩,对飞行器纵、航向操稳特性均有影响;捕获型线径向位置远离中心体时,有利于改善前体/进气道的纵、航向静稳定性;捕获型线沿周向位置变化时,对纵向静稳定性影响较小,捕获型线纵向面对称时,溢流口朝下,能显著提高有攻角时进气道的流量系数,但会产生较大抬头力矩,航向静稳定性也变差。  相似文献   
6.
吸气式高速飞行器内外流高度耦合,激波-边界层干扰严重,壁面温度会影响边界层内的流动,进而影响气动特性。因此,准确评估风洞试验中的壁温效应,提高气动特性的预测精度,对飞行器设计至关重要。通过常规超高速风洞试验,结合数值模拟分析,开展了内流壁温对气动特性的影响规律及作用机理研究。结果表明:在常规超高速风洞几十秒的运行时间内,随着运行时间增加,飞行器内流道壁面温度不断升高,俯仰力矩以及内流道壁面压力均会出现显著变化,其中俯仰力矩的增加量需要2°舵偏角来平衡;此外,数值模拟分析进一步指出,飞行器俯仰力矩的变化主要原因是内流道壁面温度升高、边界层增厚、近壁低速区挤压中心的高速区,使得内流道等效面积减小、气流压缩,相应的马赫数减小、压力升高,并引起内流道激波波系前移,从而改变了内流道压力分布,最终导致俯仰力矩发生变化。  相似文献   
7.
高速飞行器翼舵缝隙激波风洞精细测热试验研究   总被引:1,自引:0,他引:1  
高速飞行器的气动控制翼舵面,为了转动灵活,在弹体和翼舵面之间存在缝隙。缝隙的存在会导致高速热气流进入,在舵轴根部产生强分离再附区域,形成高热、高压、高剪切严酷热环境,对飞行器的热防护提出了很高要求。由于影响翼舵缝隙流动的因素十分复杂,缝隙内热环境的准确预测非常困难。目前传统的激波风洞缝隙测热试验受限于薄膜热流传感器2mm直径,只能在分离再附区布置有限测点,无法捕捉到热流峰值,导致计算与试验存在较大偏差。本文根据缝隙分离再附区热环境特点,针对精细测量的可行性,从传感器选取、测点布置方案、测量及数据后处理等方面进行了详细分析,提出了分布式热电偶精细测量方法,实现了采用点测热达到面测热的效果。针对简化的圆柱弹身加舵面的模型,完成翼舵缝隙精细测热试验,获得了翼舵干扰区峰值热流。试验研究了不同缝隙高度、舵偏角、迎角对翼舵干扰区热环境的影响规律,试验结果表明:翼舵缝隙对弹身干扰主要集中在舵轴干扰区。舵轴干扰区热环境随着缝隙高度的增加而增强,随着舵偏角和迎角的增大而增大。同时,试验结果与CFD计算结果对比表明,两者基本吻合。  相似文献   
8.
典型气动问题试验方法研究的综述   总被引:1,自引:0,他引:1  
吸气式高超声速飞行器机体与推进系统高度一体化,飞行器内外流场复杂及相互影响,地面试验模拟技术难度大,有必要开展风洞试验方法研究。本文简要分析了吸气式高超声速飞行器的主要气动问题和试验需求。针对机体/推进一体化性能试验、边界层强制转捩试验与尖锐前缘电弧风洞等三类典型试验,梳理了国内外相关风洞试验的研究思路,提出了上述三类典型风洞试验应模拟的参数,对地面试验难以模拟的重要参数进行了影响分析。根据现有试验设施的模拟能力,总结了三类典型风洞试验方法,并提出了机体/推进一体化性能数据准确获取的有效方法。  相似文献   
9.
徐锦  罗金玲  戴梧叶 《推进技术》2017,38(8):1732-1740
根据有旋特征线理论,设计了沿程壁面压力分布可控的轴对称基准流场,分析了Ma=6.5状态基准流场的设计参数(包括壁面前缘压缩角、中心体半径和壁面压升规律等)的影响规律。结果表明:前缘压缩角的增大会使基准流场的增压比增加、总压恢复降低;较小的中心体半径有利于减小内收缩比,提高流场起动性能;壁面压力梯度递增的基准流场的压缩效率高。最后,针对基准流场,建立了多项式响应面模型并利用多目标遗传算法进行优化,根据优化获得的Pareto最优前沿选取两个流场进行比较。和选定的流场长度、出口总压恢复系数基本不变的其中一流场相比较,另一流场的收缩比增加了9.5%,增压比提高了14%,喉道马赫数降低了约3.2%,说明优化结果可为选取性能优良的基准流场提供参考。  相似文献   
10.
一体化外形的高超声速飞行器升阻特性研究   总被引:4,自引:0,他引:4  
罗金玲  徐敏  刘杰 《宇航学报》2007,28(6):1478-1481
针对吸气式高超声速飞行器气动/发动机一体化耦合的特点,阐述了高超声速飞行器存在推力-阻力平衡、升力-重力平衡、力的界面划分等问题;分析了飞行器主要部件的受力情况及对整个飞行器阻力、升力的影响,算例分析表明,发动机内通道产生负升力,后体产生正升力,发动机的合升力为负值;介绍了气动/发动机力的界面划分的两种方法及其应用,给出了研究推力-阻力平衡、升力-重力平衡、升阻比特性时应采用的划分方法;利用Bruguet航程公式研究了飞行器的航程与升阻比的关系,证明高超声速飞行器的航程存在极限值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号