首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
  国内免费   1篇
航空航天   11篇
  2011年   3篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  1998年   1篇
  1997年   2篇
排序方式: 共有11条查询结果,搜索用时 187 毫秒
1.
通过对APC-2/AS4带材火焰辅助缠绕过程的研究,分析了工艺条件对制件成形质量的影响和制件的断面显微特征,认为火焰辅助缠绕制件的孔隙主要是由于基体和纤维的降解失重产生的,而不是空气夹杂产生的。  相似文献   
2.
对400K下简化环氧分子结构的键长、键角、四原子扭转角及非键合原子间距离等结构参数在微小温度波动时进行动态模拟,分析了这些结构参数在该条件下的变形刚性。  相似文献   
3.
Carbon-Epoxy圆管件的静态吸能特征   总被引:2,自引:0,他引:2  
Carbon/Epoxy复合材料可以用作理想的吸能材料。为了考察材料体系对结构吸能性能的影响,对一系列Carbon/Epoxy圆管件进行了静态吸能性能试验。试验结果表明,在基体种类相同的条件下,结构的压溃失效模式有很大的区别。材料的吸能性能不仅同材料性能关系密切,而且也受材料纤维方式影响。  相似文献   
4.
用共固结和热变形成型技术制造热塑性复合材料加筋结构   总被引:1,自引:1,他引:0  
报导了碳纤维增强聚醚醚酮基热塑性复合材料的带L型加强筋结构件的一体化制造过程。强调了加强筋的热变形成型制造技术。实验发现,用编织布直接铺层模压成型加强筋时,难于精确控制碳纤维的定位;成型固结后,边缘区空隙率高。而用对合模模压热变形成型技术制造时,这些问题则可以解决。采用共固结技术制备了平板加筋结构。后两项技术在制造复杂制件方面具有一定的优势,大批量生产时可以降低制造成本。  相似文献   
5.
PEEK树脂基复合材料具有突出的韧性和高损伤容限,但因成型工艺条件较为苛刻,且铺覆性能差,影响了曲面成型能力.利用柔性混编预浸料技术则可解决这一难题,高质量、高效率地实现复杂曲面结构件的制备.分别带有"L"型加强筋和帽型材的加筋口盖的制造,对此进行了充分的验证.  相似文献   
6.
通过对APC-2/AS4热塑性预浸带缠绕过程的研究,分析了缠绕管件的断面显微特征,认为热塑性预浸带热芯缠绕成形过程中,形成孔隙的主要原因是层间的不良浸渍而非基体的降解。提高缠绕张力和树脂含量有利于孔隙的消除,但又对制件中树脂的均匀性及外表面尺寸稳定性有影响。  相似文献   
7.
冷场发射扫描电镜表明,固化5228A/ PAEK 共混体系发生了反应诱导相分离,相形貌依次经历
了海岛-双连续-相反转的演化过程; DMA 试验表明,PAEK 的引入对5228A 基体树脂Tg 略有影响,但基本不
会改变原有树脂体系的使用温度;T800/5228A 经韧化后,在层间内形成了典型的相反转结构,裂纹扩展路径呈
现出波纹状,明显区别于原有的光滑平直裂纹路径,玉型层间断裂韧度(GIC)大幅度提高。  相似文献   
8.
冷场发射扫描电镜表明,固化5228A/PAEK共混体系发生了反应诱导相分了海岛-双连续-相反转的演化过程;DMA试验表明,PAEK的引入对5228A基体树脂T会改变原有树脂体系的使用温度;T800/5228A经韧化后,在层间内形成了典型的相反转结现出波纹状,明显区别于原有的光滑平直裂纹路径,Ⅰ型层间断裂韧度(GIC)大幅度提高.  相似文献   
9.
研究了宽冲击能量范围(12.8、25.5、34.2、42.3与51 J)内T800/5228E复合材料层合板动态冲击力学响应历程.结果表明,复合材料层合板损伤历程依次为裂纹引发→分层扩展→最大损伤→二次损伤等,冲击能量基本不会对其发展演化历程产生影响;力学损伤参数研究发现,赫兹失效载荷Fh与冲击能量成线性关系,而最大作用载荷Fmax与冲击能量为特定指数函数关系.不可逆能量Lw与能量吸收率η研究表明,两者均与冲击能量保持单调递增关系,反映复合材料板的损伤程度在加重,但损伤面积基本趋于稳定,纤维断裂等二次损伤可能成为新型能量吸收方式.  相似文献   
10.
采用模拟试验的方法研究了复合材料树脂膜渗透成型(Resin Film Infusion RFI)过程中树脂粘度及压力对渗透高度及浸渍质量的影响。实验结果表明,总体上树脂的粘度提高,复合材料的渗透浸渍高度下降。成型压力则对不同粘度体系及增强材料预处理情况有不同的结果,一方面提高树脂渗透驱动力,另一方面压实纤维床从而降低渗透率。但压力的提高总是有利于提高渗透浸渍质量,减少孔隙率。分析认为压力影响渗透高度的实质是渗透压力变化及纤维床的压实两种因素的共同作用结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号