首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环境安全   3篇
  2017年   1篇
  2010年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
This paper presents information about airborne mesophilic bacteria in the indoor and outdoor air of child day-care centers (CDCCs) in the city of Edirne, Turkey. Air samples were collected using the Petri plate gravitational settling method from the indoor and outdoor air of CDCCs. Counts of airborne bacteria were measured as colony forming units (CFU) collected by gravity onto Brain Heart Infusion Agar plates (with 5% sheep blood). Samples were taken monthly over a period of 12 months between January and December 2004. A total of 3,120 bacteria colonies were counted on 192 Petri plates. Four groups of culturable bacteria were identified: Gram-positive cocci, Gram-positive bacilli, endospore-forming Gram-positive bacilli, and Gram-negative bacteria. Airborne Gram-positive bacteria were the most abundant at more than 95% of the measured population. While Gram-positive cocci were more common in indoor environments, Gram-positive bacilli were more dominant in outdoor air. Bacteria commonly isolated from CDCCs were identified at a genus level. Staphylococcus (39.16%), Bacillus (18.46%), Corynebacterium (16.25%), and Micrococcus (7.21%) were dominant among the genera identified in the present study. The dominant genera identified in the day-care centers were Staphylococcus, Micrococcus, and Corynebacterium for indoor air and Bacillus, Corynebacterium, and Staphylococcus for outdoor air. Staphylococcus, Streptococcus, Bacillus, and Corynebacterium genera were found in samples from every month. Bacterial colony counts were compared by sampling location (indoors and outdoors), seasons, and meteorological factors. We found negative correlations between the monthly total outdoor bacterial counts and the sampling day’s average relative humidity and average rainfall, and the monthly average rainfall. Fluctuations in bacterial counts in different seasons were observed.  相似文献   
2.
The purpose of this study was to determine the concentration, in terms of monthly and seasonal distribution and in relation to meteorological factors, of indoor and outdoor microfungi at selected sites in several child day care centers in the city of Edirne, Turkey. Samples were collected at one month intervals over a period of 12 months between January-December 2004, by exposing petri plates containing Peptone Dextrose Agar with Rose-Bengal and Streptomycin medium to the air for 10-15 min. A total of 2,071 microfungal colonies were counted on 192 petri plates. Thirty microfungal genera (Acremonium, Alternaria, Arthrinium, Aspergillus, Bahusakala, Beauveria, Ceuthospora, Chaetomium, Cladosporium, Curvularia, Drechslera, Epicoccum, Eurotium, Fusarium, Mycotypha, Myrotechium, Paecilomyces, Penicillium, Pestalotiopsis, Phoma, Ramichloridium, Rhizopus, Scopulariopsis, Stachybotrys, Stemphylium, Torula, Trichoderma, Trichothecium, Ulocladium, Verticillium) and 75 microfungal species were isolated from the air indoor and outdoor of the day care centers. The dominant microfungal genera were Cladosporium, Penicillium and Alternaria (44.11%, 18.94%, 14.67% of the total respectively), while the genus with the most species richness was Penicillium (26 species). Alternaria, Cladosporium, Penicillium and non-sporulating microfungi were found every month. Cladosporium was the dominant genus in both indoor and outdoor air. Although the predominant genus was the same in both indoor and outdoor air, Cladosporium was followed by Penicillium, Alternaria and Aspergillus genera in indoor air and by Alternaria, Penicillium and Aspergillus genera in outdoor air. While a positive correlation was found between the concentration of monthly outdoor microfungi and monthly average temperature, a negative correlation was found between the concentration of monthly outdoor microfungi and monthly average wind velocity. Also, some relationships were found between the monthly concentrations of the most predominant microfungal genera (Cladosporium, Penicillium and Alternaria) and various meteorological factors.  相似文献   
3.
Pathogenic and/or opportunistic fungal species are major causes of nosocomial infections, especially in controlled environments where immunocompromised patients are hospitalized. Indoor fungal contamination in hospital air is associated with a wide range of adverse health effects. Regular determination of fungal spore counts in controlled hospital environments may help reduce the risk of fungal infections. Because infants have inchoate immune systems, they are given immunocompromised patient status. The aim of the present study was to evaluate culturable airborne fungi in the air of hospital newborn units in the Thrace, Marmara, Aegean, and Central Anatolia regions of Turkey. A total of 108 air samples were collected seasonally from newborn units in July 2012, October 2012, January 2013, and April 2013 by using an air sampler and dichloran 18% glycerol agar (DG18) as isolation media. We obtained 2593 fungal colonies comprising 370 fungal isolates representing 109 species of 28 genera, which were identified through multi-loci gene sequencing. Penicillium, Aspergillus, Cladosporium, Talaromyces, and Alternaria were the most abundant genera identified (35.14, 25.40, 17.57, 2.70, and 6.22% of the total, respectively).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号