首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
环境安全   1篇
  2006年   1篇
排序方式: 共有1条查询结果,搜索用时 328 毫秒
1
1.
Changes in bioavailability of pyrene in three uncontaminated soils were examined under aerobic and anaerobic conditions. Three soils were aerobically aged with pyrene and [(14)C]pyrene for 63 days, then incubated with water, nitrate, or sulfate under aerobic or anaerobic conditions for one year. Under aerobic conditions, microorganisms in two soils mineralized 58-82% of the added [(14)C]pyrene. The two soils amended with nitrate were seen to have enhanced aerobic mineralization rates. In one of these soils, non-extractable pyrene was seen to decrease over the course of the study due to desorption and mineralization, nitrate amendment enhanced this effect. Under anaerobic conditions, generated with a N(2):CO(2)(g) headspace, two soils with nitrate or sulfate amendment showed an increase in extractable [(14)C]pyrene at 365 days relative to inhibited controls, presumably due to microbially mediated oxidation-reduction potential and pH alteration of the soil environment. These observations in different soils incubated under aerobic and anaerobic conditions have important implications relative to the impact of microbial electron acceptors on bioavailability and transport of non-polar organic compounds in the environment suggesting that, given enough time, under the appropriate environmental conditions, non-extractable material becomes bioavailable. This information should be considered when assessing site specific exposure risks at PAH contaminated locations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号