首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
工业技术   22篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2012年   1篇
  2006年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
天然石墨经过浓H_3PO_4插层处理、有机胺热解碳包覆后形成具有"核-壳"结构的碳包覆插层石墨负极材料。利用X射线衍射仪、扫描电子显微镜、拉曼光谱仪和恒流充放电仪对改性天然石墨的晶体结构、表面形貌和电化学性能进行了分析和表征。结果表明:改性后的天然石墨晶面间距增大,表面成功地包覆了一层无定型碳;其首次充电比容量为366.42 m A·h/g,在1 C倍率下循环20周后容量保持率为87.13%,而在同样条件下,天然石墨的容量保持率仅为78.13%。该改性方法有效地改善了天然石墨的倍率性能和循环性能。  相似文献   
2.
以天然马铃薯淀粉为还原剂,一步法还原回收电镀污泥中的金属,并优化确定了处理工艺参数。实验结果表明:在1 500?C的氮气环境下,电镀污泥与马铃薯淀粉的质量比为3:1时是最佳的研究条件;在此条件下所得到金属熔融体比例较高,其质量占还原后总质量的64.24%,能有效地回收有价重金属。  相似文献   
3.
以酚醛树脂为原料、氢氧化钾为活化剂,经过一系列的单因素实验,分别考察了活化温度、碱脂比及活化时间对碘吸附值和活性炭收率的影响。结果表明:当活化温度为800?C、碱脂比为2:1、活化时间为90 min时,制备的活性炭样品的碘吸附值和活性炭收率分别为1 531.72 mg/g和73.90%。采用热重-差热分析仪(TG-DTA)、电子显微镜(SEM)、傅里叶红外光谱仪(FTIR)、X射线衍射仪(XRD)等仪器,分别对活性炭样品的炭化活化过程、表面形态、表面官能团、物相结构进行了表征。  相似文献   
4.
锡、硅负极材料由于具有高的比容量等优点,成为提高锂离子电池能量密度的首选负极材料。首先介绍了目前产业界开发锡、硅负极材料的进展,并从商业化的角度比较了这两类材料在开发工艺及实际使用电性能方面的区别。进一步从基础研发角度重点阐述了不同结构的硅基材料(单质硅、硅氧化物、硅碳复合物及硅合金)的电性能改性研究进展,指出了具有工业化前景的工艺方法。  相似文献   
5.
采用水热酸洗法对磷化渣进行提纯,以得到的含有微量Zn、Ca等元素的FePO_4为原料,利用碳热还原法制备多元掺杂LiFePO_4/C正极材料。利用X射线荧光光谱仪(EDX)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电化学工作站及恒流充放电仪对材料的组分、晶体结构、形貌及电化学性能进行了分析和表征。结果表明:磷化渣提纯后得到的FePO_4纯度较高;合成的LiFePO_4/C正极材料晶体结构为橄榄石型,其首次放电比容量为146.28 mAh/g,首次库仑效率为94.05%,同时表现出较好的倍率和循环性能。  相似文献   
6.
电动汽车及混合动力汽车的发展对锂离子电池的功率特性提出了更高的要求.目前商业化的锂离子电池负极材料以石墨为主.然而石墨材料的层间距较小(0.335 nm),锂的扩散受到限制,不利于大电流充电.因此,制备和评价具有快充能力的石墨负极材料将有力推动锂离子电池在电动汽车中的应用.本文选择了一种小粒径(约6.7 μm)人造石墨,通过包覆硬碳进一步提高材料的快充性能.采用SEM、BET等表征材料的物理指标.考察材料首次充放电曲线、倍率、电化学阻抗和锂离子扩散系数等,评价硬碳包覆对快充性能的影响.  相似文献   
7.
制备了氮掺杂改性的碳纳米管(CNx),并对其进行了扫描电子显微镜(Scanning Electron Microscopy,SEM)和X射线衍射仪(XRD,X-Ray Diffraction)表征。利用循环伏安法测定了铅离子在氮掺杂碳纳米管修饰电极上的电化学行为。结果表明,氮掺杂碳纳米管修饰电极对铅离子有明显的电催化行为,而且它在铅离子检测中的效果明显优于裸的玻碳电极。在拟定条件下,氮掺杂碳纳米管修饰电极对铅离子的检测限为0.06μmol/L,线性范围为0.06~0.1μmol/L,并且具有良好的稳定性与重复性,因而该电极具有良好的应用前景。  相似文献   
8.
利用水热酸洗法对固废磷化渣进行提纯,以得到纯度较高的FePO_4·2H_2O为铁源,通过碳热还原法制备LiFePO_4/C正极材料。研究结果表明:当焙烧温度为750?C时,制得的LiFePO_4/C材料晶体结构良好,首次放电比容量为151.9 m A·h/g,首次库伦效率为93.5%;在10 C倍率下容量保持率为65.0%;经过80周循环后,放电比容量基本不衰减,表现出较好的倍率和循环性能。  相似文献   
9.
陈通  申韬艺  吴敏昌  乔永民  王利军 《电源技术》2021,45(10):1237-1239,1244
磷酸铁(FePO4)作为磷酸铁锂(LiFePO4)材料的前驱体,随着锂离子电池的发展引起了广泛的关注.磷化渣是磷化工业的副产物,含有大量的磷酸铁,将磷化渣提纯得到粗提纯FePO4,经水热重结晶得到亚微米-微米级前驱体FePO4,以碳热还原的手段得到LiFePO4.研究了水热过程中十六烷基三甲基溴化铵(CTAB)添加量、pH对FePO4粒度的影响.结构表征手段主要有XRD、SEM、LPS等,使用电化学工作站表征LiFePO4材料的电化学性能.电化学表征结果表明,该材料具有较高的的首次充电比容量,接近磷酸铁锂的理论比容量,库仑效率达到93.51%,但高倍率下的充放电性能较差.  相似文献   
10.
锂离子电池低温存储技术是智慧城市发展的关键之一。商用电解液在低温下易凝固、阻抗高限制了锂离子电池的进一步应用。因此电解液的优化成为改善锂离子电池低温性能的研究热点之一。本文介绍了低温电解液的研究进展。综述了温度对锂离子电池充放电影响,提出电解液改性是提高锂离子电池低温性能的关键。低温电解液的改性主要包括锂盐、溶剂和添加剂等方面,并对锂离子电池低温性能的下一步研究进行了展望。低温电解液锂盐的研究重点在于发展具有低电荷转移阻抗和宽温范围的新体系锂盐,低温电解液溶剂的研究重点在于发展具有高介电常数的EC溶剂与低熔点的PC溶剂混合体系,低温电解液添加剂的研究重点在于传统添加剂与新型添加剂的联用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号