首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
地球科学   22篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
Additional data for gabbro, GOG-1, were determined by instrumental-neutron-activation analysis, atomic-absorption spectrometry, and semi-quantitative spectrographic analysis. F ratios calculated in the analysis of variance for 26 sets of data for elements determined by the three methods were not significant, and hence the elements are distributed homogeneously among the bottles. The agreement between our data and the averages previously published ranges from very good to poor. More analytical data are necessary to establish reliable estimates of the concentrations of elements in GOG-1 and in two other gabbros so that three gabbros may be available to geochemists for use as standards.  相似文献   
2.
A blueschist facies tectonic sliver, 9 km long and 1 km wide, crops out within the Miocene clastic rocks bounded by the strands of the North Anatolian Fault zone in southern Thrace, NW Turkey. Two types of blueschist facies rock assemblages occur in the sliver: (i) A serpentinite body with numerous dykes of incipient blueschist facies metadiabase (ii) a well‐foliated and thoroughly recrystallized rock assemblage consisting of blueschist, marble and metachert. Both are partially enveloped by an Upper Eocene wildflysch, which includes olistoliths of serpentinite–metadiabase, Upper Cretaceous and Palaeogene pelagic limestone, Upper Eocene reefal limestone, radiolarian chert, quartzite and minor greenschist. Field relations in combination with the bore core data suggest that the tectonic sliver forms a positive flower structure within the Miocene clastic rocks in a transpressional strike–slip setting, and represents an uplifted part of the pre‐Eocene basement. The blueschists are represented by lawsonite–glaucophane‐bearing assemblages equilibrated at 270–310 °C and ~0.8 GPa. The metadiabase dykes in the serpentinite, on the other hand, are represented by pumpellyite–glaucophane–lawsonite‐assemblages that most probably equilibrated below 290 °C and at 0.75 GPa. One metadiabase olistolith in the Upper Eocene flysch sequence contains the mineral assemblage epidote + pumpellyite + glaucophane, recording P–T conditions of 290–350 °C and 0.65–0.78 GPa, indicative of slightly lower depths and different thermal setting. Timing of the blueschist facies metamorphism is constrained to c. 86 Ma (Coniacian/Santonian) by Rb–Sr phengite–whole rock and incremental 40Ar–39Ar phengite dating on blueschists. The activity of the strike–slip fault post‐dates the blueschist facies metamorphism and exhumation, and is only responsible for the present outcrop pattern and post‐Miocene exhumation (~2 km). The high‐P/T metamorphic rocks of southern Thrace and the Biga Peninsula are located to the southeast of the Circum Rhodope Belt and indicate Late Cretaceous subduction and accretion under the northern continent, i.e. the Rhodope Massif, enveloped by the Circum Rhodope Belt. The Late Cretaceous is therefore a time of continued accretionary growth of this continental domain.  相似文献   
3.
Abstract– 40Ar/39Ar dating of potassium feldspar (primary spherulitic‐blocky and secondary idiomorphic K‐feldspar) separated from impact‐metamorphosed gneiss found near Videix in the western central part of the Rochechouart impact structure (NW Massif Central, France) yielded a Rhaetian combined age of 201 ± 2 Ma (2σ), indistinguishable within uncertainty from the age of the Triassic/Jurassic boundary. Ballen quartz intergrown with the primary K‐feldspar indicates post‐shock temperatures exceeding approximately 1000 °C that affected the precursor gneiss. Geochemically, both feldspar types represent essentially pure potassium end‐members. Apart from the approximately 15 km diameter impact deposit area, the youngest crystallization age known for basement rocks in this part of the Massif Central is approximately 300 Ma. No endogenic magmatic‐thermal events are known to have occurred later in this region. The K‐feldspar recrystallized from local feldspar melts and superimposed post‐shock hydrothermal crystallization, probably within some thousands of years after the impact. It is, therefore, suggested that the 40Ar/39Ar age for the Videix gneiss (as a potassic “impact metasomatite”) dates the Rochechouart impact, in consistence with evidence for K‐metasomatism in the Rochechouart impactites. The new age value is distinctly younger than the previously obtained Karnian–Norian age for Rochechouart and, thus, contradicts the Late Triassic multiple impact theory postulated some years ago. In agreement with the paleogeographic conditions in the western Tethys domain around the Triassic/Jurassic boundary, the near‐coastal to shallow marine Rochechouart impact is compatible with the formation of seismites and tsunami deposits in the latest Triassic of the British Isles and possible related deposits in other parts of Europe.  相似文献   
4.
Abstract– 40Ar/39Ar dating of recrystallized K‐feldspar melt particles separated from partially molten biotite granite in impact melt rocks from the approximately 24 km Nördlinger Ries crater (southern Germany) yielded a plateau age of 14.37 ± 0.30 (0.32) Ma (2σ). This new age for the Nördlinger Ries is the first age obtained from (1) monomineralic melt (2) separated from an impact‐metamorphosed target rock clast within (3) Ries melt rocks and therewith extends the extensive isotopic age data set for this long time studied impact structure. The new age goes very well with the 40Ar/39Ar step‐heating and laser probe dating results achieved from mixed‐glass samples (suevite glass and tektites) and is slightly younger than the previously obtained fission track and K/Ar and ages of about 15 Ma, as well as the K/Ar and 40Ar/39Ar age data obtained in the early 1990s. Taking all the 40Ar/39Ar age data obtained from Ries impact melt lithologies into account (data from the literature and this study), we suggest an age of 14.59 ± 0.20 Ma (2σ) as best value for the Ries impact event.  相似文献   
5.
The distribution of REE minerals in metasedimentary rocks was investigated to gain insight into the stability of allanite, monazite and xenotime in metapelites. Samples were collected in the central Swiss Alps, along a well‐established metamorphic field gradient that record conditions from very low grade metamorphism (250 °C) to the lower amphibolite facies (~600 °C). In the Alpine metapelites investigated, mass balance calculations show that LREE are mainly transferred between monazite and allanite during the course of prograde metamorphism. At very low grade metamorphism, detrital monazite grains (mostly Variscan in age) have two distinct populations in terms of LREE and MREE compositions. Newly formed monazite crystallized during low‐grade metamorphism (<440 °C); these are enriched in La, but depleted in Th and Y, compared with inherited grains. Upon the appearance of chloritoid (~440–450 °C, thermometry based on chlorite–choritoid and carbonaceous material), monazite is consumed, and MREE and LREE are taken up preferentially in two distinct zones of allanite distinguishable by EMPA and X‐ray mapping. Prior to garnet growth, allanite acquires two growth zones of clinozoisite: a first one rich in HREE + Y and a second one containing low REE contents. Following garnet growth, close to the chloritoid–out zone boundary (~556–580 °C, based on phase equilibrium calculations), allanite and its rims are partially to totally replaced by monazite and xenotime, both associated with plagioclase (± biotite ± staurolite ± kyanite ± quartz). In these samples, epidote relics are located in the matrix or as inclusions in garnet, and these preserve their characteristic chemical and textural growth zoning, indicating that they did not experience re‐equilibration following their prograde formation. Hence, the partial breakdown of allanite to monazite offers the attractive possibility to obtain in situ ages, representing two distinct crystallization stages. In addition, the complex REE + Y and Th zoning pattern of allanite and monazite are essential monitors of crystallization conditions at relatively low metamorphic grade.  相似文献   
6.
On experimentally deposited kaolinite, illite, and Ca-bentonite consolidated under their own load or by additional vertical pressure, the progress of compaction in relation to excess pore water pressure, mass physical properties, gravitational mass movements in a tilted tank, and erodibility under running water in a flume were studied. The very low consolidated sediments near the mud/water interface do not obey the generally used theory in soil mechanics. They show a different, non-linear relationship between void ratio or water content and depth below the sedimentary surface on the one hand, or effective overburden pressure and shear strength on the other. The same is true of other physical properties such as permeability, which changes considerably with depth and time of consolidation. High sedimentation rates on slopes induce shallow sediment flow, whereas at low rates and critical slope angles different types of slope failures including the breaking up of water-rich sediment into sharp boundered blocks are observed. Flume studies on soft clay muds show three different types of erosion: continuously suspending, discontinuous erosion of crumbs or shreds, and wavy deformation of the clay surface with disintegration of particles from the crests. The critical tractive stress depends not only on clay type, void ratio, and shear strength, but significantly also on the ‘geologic history’of the clay (i.e. deposition from thin suspension or dense slurry, fabric, consolidation and swelling generating minute inhomogeneities etc.). The experiments may lead to a better understanding of all mechanical processe's including pore-water flow taking place near or not far below the sediment/ water interface.  相似文献   
7.
We present the results of retracking 18 cycles (15 from the Jason-TOPEX collinear period) of Jason-1 data. We used the retracking method of Rodriguez which simultaneously solves for all relevant waveform parameters using a 26 Gaussian model of the altimeter point target response. We find significant differences from the Jason-1 Project retracking in the key parameters of range and significant wave height (SWH) in the second version of the Project SGDRs. The differences from the Jason-1 data have a strong dependence on off-nadir angle and some dependence on SWH. The dependence of range on SWH is what is called sea state bias. The retracking technique also estimates surface skewness. For Jason-1 with its very clean waveforms we make the first direct estimates of the skewness effect on altimeter data. We believe that the differences found here and thus in overall sea surface height are the result of the standard project processing using a single Gaussian approximation to the Point Target Response (PTR) and not solving simultaneously for off nadir angle. We believe that the relatively large sea state bias errors estimated empirically for Jason-1 during the cal/val phase result from sensitivity of quantities, particularly SWH, in project GDRs to off nadir angle. The TOPEX-Jason-1 bias can be determined only when a full retracking of Jason-1 is done for the collinear period.  相似文献   
8.
The Ediacaran to lowermost Cambrian successions of south‐eastern Uruguay preserve an unusual and significant record of deposits generated during the Gondwana assembly (ca 590 to 535 Ma). This study presents a review of data obtained through extensive field‐based mapping coupled with detailed sedimentology and stratigraphy of key formations. The geological units within the study area consist of the Maldonado Group (Playa Hermosa, Las Ventanas and San Carlos formations), the Arroyo del Soldado Group (Yerbal, Polanco Limestones, Barriga Negra and Cerro Espuelitas formations) and the Arroyo de la Pedrera Group (Piedras de Afilar and Cerro Victoria formations). The Maldonado Group is characterized by a glacially influenced volcanogenic‐sedimentary sequence with ice‐rafted debris and dropstones in the Playa Hermosa and Las Ventanas formations. The Arroyo del Soldado Group is a mixed siliciclastic‐carbonate succession, mainly represented by an intercalation of basal pink dolostones, banded siltstones, rhythmites of dolostone‐limestone, iron formations, cherts and conglomerates. Carbonates in the Polanco Limestones Formation are characterized by a negative δ13C excursion up to ?3·26‰ PeeDeeBelemnite. The Arroyo de la Pedrera Group consists of quartz arenites and stromatolitic/oolitic dolostones. Preliminary data indicate that the Precambrian–Cambrian could be contained within or at the base of this group. The entire succession is almost 6000 m thick, and contains a rich fossil assemblage composed of organic‐walled microfossils and small shelly fauna, including the index fossil Cloudina riemkeae. The stratigraphic and chemostratigraphic features are suggestive of a Gaskier age (ca 580 Ma) for the basal glacial‐related units. In this scenario, the results show the importance of lithostratigraphic, biostratigraphic and chemostratigraphic data of these Ediacaran units in the global correlation of terminal Proterozoic sedimentary rocks.  相似文献   
9.
10.
The available clay and feldspar reference samples, rather than the frequently used rock reference samples, are suggested as standards for archaeological pottery studies because their trace-element contents are more like those of the artefacts. Such samples may provide a basis for correlating archaeological studies throughout the world. The assumption that bottles of such reference samples should have homogeneous trace-element contents because of the nature of the materials has been confirmed by the analysis of variance of trace -element data by instrumental neutron activation analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号