首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
地球科学   14篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2001年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1974年   2篇
  1964年   1篇
排序方式: 共有14条查询结果,搜索用时 293 毫秒
1.
The response of base-isolated buildings to gusting wind is analysed theoretically based on experimental data obtained in a boundary layer wind tunnel. A comparison is made with the response evaluated using existing codes. A special procedure, similar to that of current codes, for computing the alongwind and torsional responses of base-isolated buildings is presented.  相似文献   
2.
Dynamic response of single piles embedded in transversely isotropic layered media is investigated using the finite element method combined with dynamic stiffness matrices of the soil derived from Green's functions for ring loads. The influence of soil anisotropy on the dynamic behaviour of piles is examined through a series of parametric studies.  相似文献   
3.
In this paper a comprehensive investigation on the dynamic characteristics of turbine–generator–foundation systems is performed. All the major components of the system, including turbine–generator casing, shaft, rotors, journal bearings, deck, piers, foundation mat, piles, and soil medium, have been included. Full interaction between the turbine–generator set, the foundation superstructure, and the soil medium, is considered. A hybrid method is used to establish the mathematical model for the turbine–generator-foundation system. The analysis is conducted in the frequency domain through complex frequency response analysis. The response in the time domain is obtained by Fourier transform. The seismic excitation is represented as the control motion on the ground surface, which is generated as an artificial earthquake. A 300 MW turbine-generator-foundation system is analysed under excitations from rotor unbalances and earthquakes. The influence of turbine-generator casing and soil anisotropy on the response of the system is explored. It is found that the presence of casing and soil anisotropy strongly influences the displacements and internal forces of the system under rotor unbalance excitation. Under seismic excitation, however, although the presence of casing and soil anisotropy does affect the displacements of the system, their effect on the internal forces of the system is minimal.  相似文献   
4.
5.
6.
Estuarine turbidity maxima (ETMs) are sites of intense mineralisation of land-derived particulate organic matter (OM), which occurs under oxic/suboxic oscillating conditions owing to repetitive sedimentation and resuspension cycles at tidal and neap-spring time scales. To investigate the biogeochemical processes involved in OM mineralisation in ETMs, an experimental set up was developed to simulate in vitro oxic/anoxic oscillations in turbid waters and to follow the short timescale changes in oxygen, carbon, nitrogen, and manganese concentration and speciation. We present here the results of a 27-day experiment (three oxic periods and two anoxic periods) with an estuarine fluid mud from the Gironde estuary. Time courses of chemical species throughout the experiment evidenced the occurrence of four distinct characteristic periods with very different properties. Steady oxic conditions were characterised by oxygen consumption rates between 10 and 40 μmol L−1 h−1, dissolved inorganic carbon (DIC) production of 9–12 μmol L−1 h−1, very low NH4+ and Mn2+ concentrations, and constant NO3 production rates (0.4 - 0.7 μmol L−1 h−1) due to coupled ammonification and nitrification. The beginning of anoxic periods (24 h following oxic to anoxic switches) showed DIC production rates of 2.5–8.6 μmol L−1 h−1 and very fast NO3 consumption (5.6–6.3 μmol L−1 h−1) and NH4+ production (1.4–1.5 μmol L−1 h−1). The latter rates were positively correlated to NO3 concentration and were apparently caused by the predominance of denitrification and dissimilatory nitrate reduction to ammonia. Steady anoxic periods were characterised by constant and low NO3 concentrations and DIC and NH4+ productions of less than 1.3 and 0.1 μmol L−1 h−1, respectively. Mn2+ and CH4 were produced at constant rates (respectively 0.3 and 0.015 μmol L−1 h−1) throughout the whole anoxic periods and in the presence of nitrate. Finally, reoxidation periods (24–36 h following anoxic to oxic switches) showed rapid NH4+ and Mn2+ decreases to zero (1.6 and 0.8–2 μmol L−1 h−1, respectively) and very fast NO3 production (3 μmol L−1 h−1). This NO3 production, together with marked transient peaks of dissolved organic carbon a few hours after anoxic to oxic switches, suggested that particulate OM mineralisation was enhanced during these transient reoxidation periods. An analysis based on C and N mass balance suggested that redox oscillation on short time scales (day to week) enhanced OM mineralisation relative to both steady oxic and steady anoxic conditions, making ETMs efficient biogeochemical reactors for the mineralisation of refractory terrestrial OM at the land-sea interface.  相似文献   
7.
Fifty-four broadband models for computation of solar diffuse irradiation on horizontal surface were tested in Romania (South-Eastern Europe). The input data consist of surface meteorological data, column integrated data, and data derived from satellite measurements. The testing procedure is performed in 21 stages intended to provide information about the sensitivity of the models to various sets of input data. There is no model to be ranked “the best” for all sets of input data. However, some of the models performed better than others, in the sense that they were ranked among the best for most of the testing stages. The best models for solar diffuse radiation computation are, on equal footing, ASHRAE 2005 model (ASHRAE 2005) and King model (King and Buckius, Solar Energy 22:297–301, 1979). The second best model is MAC model (Davies, Bound Layer Meteor 9:33–52, 1975). Details about the performance of each model in the 21 testing stages are found in the Electronic Supplementary Material.  相似文献   
8.
The paper presents results of a study on the harmonic response of piles and pile groups embedded in a halfspace to various forms of seismic waves. These include the Rayleigh wave as well as obliquely incident P, SV and SH waves. The pertinent mixed boundary value problems of pile-soil-pile interaction are solved by a numerical model of the boundary integral nature. All modes of foundation vibrations, i.e. translational, rocking and torsional, are included in the model. The results presented are used to highlight the salient features of the seismic response of piles. In addition, the influence of certain pile-soil parameters, such as pile rigidity and pile spacing, on the seismic behaviour of pile foundations is investigated.  相似文献   
9.
The previous paper on this subject, Reference 1, is complemented here to include one additional effect of soil on structural response. This effect is the modification of the original structural damping, estimated under the assumption of rigid foundation, due to foundation flexibility. This can be of practical importance, particularly with heavily damped structures vibrating in the fundamental mode. With lightly damped structures, such as those assumed in Reference 1, this effect diminishes.  相似文献   
10.
Testing of stiff physical substructures (PSs) still poses major technical issues that prevent from adopting hybrid simulation (HS) as a standard structural testing method. Firstly, elastic deformation of reaction frames, as well as the limited resolution of displacement transducers, deteriorate displacement control accuracy. Secondly, as a consequence of control errors, small perturbations of actuator displacements entail large restoring force oscillations that spuriously excite the higher eigenmodes of the hybrid model. For this reason, in the current practice, force-controlled hydraulic jacks handle vertical degrees of freedom, which are typically associated with stiff axially loaded members and excluded from the time integration loop. Vertical forces are either kept constant or adjusted during the experiment based on simplified redistribution rules. Besides deterioration of displacement control accuracy, stiff PSs naturally increase the frequency bandwidth of the hybrid model, whose higher eigenfrequencies (divided by the testing time scale) may fall outside the frequency bandwidth of the actuation system, thus destabilizing the HS. This is a collateral issue to which, in the authors' knowledge, no sufficient attention as been dedicated yet, and this paper tries to address it. From this standpoint, we propose component-mode synthesis as a rigorous approach for deriving reduced-order physical and numerical substructure mass and stiffness matrices that minimize the frequency bandwidth of the hybrid model. The proposed methodology allowed for performing HSs of a load-bearing unreinforced masonry structure including both horizontal and vertical degrees of freedom with a standard three-actuator setup used for cyclic testing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号