首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  国内免费   5篇
地球科学   13篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 62 毫秒
1.
2.
横断山脉地区霜冻时空分布变化特征分析   总被引:1,自引:0,他引:1  
以小于等于0℃的地面气温作为霜冻的指标,利用1961~2007年横断山脉27个气象监测站逐日温度资料分析了横断山脉初、终霜期和无霜期的变化特征.结果表明,该地区平均初霜期以1.09d/10a气候倾向率推迟,终霜期以4.02d/10a的气候倾向率提早,无霜期以4.08d/10a的气候倾向率延长,存在较明显的地域差异.从年代际变化来看,自20世纪90年代开始,初霜冻日期20世纪90年代明显推迟,终霜冻日期明显提早,无霜冻期明显延长。  相似文献   
3.
再分析土壤温湿度资料在青藏高原地区适用性的分析   总被引:1,自引:0,他引:1  
利用2010-2016年中国科学院西北生态环境资源研究院青藏高原土壤温度与湿度监测网观测数据在不同气候区和植被条件的4个地区(阿里、狮泉河、那曲和玛曲)对8套土壤温湿度再分析产品(ERA-Interim、CFSR、CFSv2、JRA-55、GLDAS-NOAH、GLDAS-CLM、GLDAS-MOS和GLDAS-VIC)进行对比分析,使用相关系数、均方根误差、平均偏差、无偏均方根误差和标准差比等统计参数综合比较各土壤温湿度产品对观测值的模拟性能,寻找适用于青藏高原地区的长时间大尺度土壤温湿度产品。结果表明:对于土壤温度,GLDAS-CLM产品在大部分站点能够合理再现两层(0~10 cm和10~40 cm)土壤温度随时间的动态过程和变化细节,虽然结果略高估观测土壤温度值,但在数值上与观测值较为接近,并且与观测值呈显著正相关关系。对于土壤湿度,土壤冻结期再分析产品不能表现土壤湿度的动态变化特征;非冻结期GLDAS-NOAH和GLDAS-CLM产品能够较好的刻画各地区两层土壤湿度随时间变化的动态过程特征,不论在误差统计量还是相关性方面都表现为最优值。GLDAS-MOS、GLDASVIC、ERA-interim和CFSv2产品虽然在一定程度上能够展现部分地区土壤湿度的变化趋势,但对观测值的刻画效果并不理想,而JRA-55产品无法描绘各地区土壤温湿度变化。  相似文献   
4.
南亚高压上下高原时间及其与高原季风建立早晚的关系   总被引:5,自引:3,他引:2  
本文利用1948—2013年NCEP/NCAR逐日再分析资料,定义了南亚高压动态特征指数,讨论了南亚高压上下高原的时间以及与高原季风建立早晚的关系。研究表明,南亚高压北界位置在4月初开始北移,5月迅速北抬,最北可达到55°N,9月开始南撤,西伸脊点在5—10月移动较稳定,5—7月向西移动到青藏高原上空,8—10月向东移动撤离高原,11月—次年4月东西摆动剧烈。南亚高压初上高原大致为6月第3候(33候),而撤离约为10月第4候(58候)。南亚高压移上高原的时间较高原夏季风建立晚73 d左右。南亚高压撤离高原时间较高原冬季风建立约早5 d。高原夏季风的建立和南亚高压初上高原是青藏高原热力作用在不同阶段的结果,反映在了高原的高低层上。  相似文献   
5.
本文利用1981~2016年的CRUNCEP资料(0.5°×0.5°)作为大气驱动数据,驱动CLM4.5(Community Land Model version 4.5)模式模拟了青藏高原地区1981~2016 年的土壤湿度时空变化。将模拟数据与台站观测资料、再分析资料(ERA-Interim和GLDAS-CLM)和微波遥感FY-3B/MWRI土壤湿度资料对比验证,表明了CLM4.5模拟资料可以合理再现青藏高原地区土壤湿度的空间分布和长期变化趋势。而且基于多种卫星遥感资料建立的较高分辨率(0.1°×0.1°)的青藏高原地表数据更加细致地刻画了土壤湿度的空间变化。对比结果表明:CLM4.5模拟土壤湿度与各个台站观测的时空变化一致,各层土壤湿度的模拟和观测均显著相关,且对浅层的模拟优于深层,但模拟结果比台站观测系统性偏大。模拟与再分析资料和微波遥感资料土壤湿度的空间分布具有一致性,均表现为从青藏高原的西北部向东南部逐渐增加的分布特点,三江源湿地和高原东南部为土壤湿度的高值区,柴达木盆地和新疆塔里木盆地的沙漠地区为低值区,土壤湿度由浅层向深层增加。土壤湿度的长期变化趋势基本表现为“变干—变湿”相间的带状分布,不同层次的土壤湿度变化趋势基本一致。模拟资料也合理地再现了夏季土壤湿度逐月的变化:高原西南地区的土壤湿度明显大范围增加,北部的柴达木盆地的干旱范围也明显的向北收缩,高原南部外围土壤湿度也明显增加,CLM4.5模拟土壤湿度比再分析资料和微波遥感资料更加细致地描述了夏季逐月土壤湿度空间分布及其变化特征。  相似文献   
6.
华维  范广洲  王炳赟 《大气科学》2012,36(4):784-794
根据NCEP/NCAR、NCEP/DOE和ERA40再分析资料以及中国596个台站逐月降水观测资料,利用相关分析、小波分析和交叉谱分析等统计方法,分析了近几十年青藏高原夏季风变化趋势及其对中国东部降水的影响,探讨了影响高原夏季风长期变化的可能原因.结果表明:高原夏季风具有年际和年代际的多时间尺度变化特征,在1958~2...  相似文献   
7.
川渝地区气候与物候的变化特征分析   总被引:2,自引:0,他引:2  
利用川渝地区44个气象台站的气象资料和2个物候观测站的物候资料分析了该地区的气候与物候变化特征:最近10 a年均温度比前30多a高0.68℃,年均降水量基本无变化。低温主要分布在川西高原,低温天数、低温积温绝对值都在减少。日均最高温度在高原南部、西南山地减少,其它地区都增加;日均最低温度都在增暖。降水在四川盆地下降,在重庆西部、川西高原增加。降水日数在高原西部增加,其它地区都下降。春始期仁寿略微推迟,北碚微弱提前;秋始期都推迟。展叶期的杏树、刺槐、水杉、紫荆、梧桐推迟,紫藤、毛桃提前。落叶期仁寿刺槐提前,北碚的植物全部推迟。  相似文献   
8.
冬半年南支槽的气候特征分析   总被引:1,自引:0,他引:1  
为了解冬半年南支槽的气候特征,定义了一个冬半年南支槽的强度指数,南支槽强度指数值越大,表示该年南支槽比较弱,反之亦然。采用经验正交函数分解(EOF)、小波分析、Mann-Kendal检验等方法,研究了南支槽的年际、年代际变化异常以及时空特征。分析结果表明,随着南支槽强度指数的整体上升,其强度总体呈现减弱的趋势。南支槽在20世纪50~70年代明显偏强,此现象持续到1976年,之后开始逐渐减弱,至今一直处于偏弱状态。对南支槽强度指数做EOF分解,仅第一模态的方差贡献就达80.29%,故南支槽的变化特征大多数年呈第一模态的分布特征,相应的时间权重系数存在明显的年际和年代际变化,且具有长期正趋势,表明南支槽减弱的趋势越来越显著。  相似文献   
9.
由于春季青藏高原动力作用在其南侧形成南支槽,南支槽年代际变化的异常,可能与中国降水异常有密切的关系。利用NCEP/NCAR月平均再分析资料和中国596个测站月降水资料,采用突变检验、合成分析等方法,分析了1950 2014年春季南支槽的强度和东、西位置的年代际变化特征,探讨了两者与同期中国降水年代际异常及环流背景场的关系。结果表明:春季南支槽的强度和位置都具有显著的年代际变化特征,南支槽强度在20世纪70年代末期有一次强弱突变过程,位置在90年代初期发生了明显的由东向西移动的转折,分别选取强度和位置突变前后的时间段进行分析,得到春季南支槽强度突变前(后),南支槽越强(弱),位置突变前(后),南支槽越偏东(西),会出现黄河流域、长江中下游及其以北和以南的大部分地区降水偏多(少),而青藏高原及其周围地区降水偏少(多)的现象,从两者突变前后与大气环流、垂直运动和水汽条件的显著关系能够合理地解释突变前后降水差异的原因。在此基础上,总结了春季南支槽年代际尺度与中国降水、大气环流的概念模型,可为中国春季的气候变化和气候预测提供更多的科学依据。  相似文献   
10.
本科教学工作水平评估是提高高校教学质量的手段.通过对高校教学质量建设要求和教学质量重要性的分析,就其建设的方式、方法提出一些建议.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号