首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5635篇
  免费   119篇
  国内免费   16篇
工业技术   5770篇
  2023年   22篇
  2022年   18篇
  2021年   107篇
  2020年   47篇
  2019年   55篇
  2018年   63篇
  2017年   66篇
  2016年   101篇
  2015年   76篇
  2014年   125篇
  2013年   264篇
  2012年   182篇
  2011年   259篇
  2010年   175篇
  2009年   214篇
  2008年   244篇
  2007年   208篇
  2006年   193篇
  2005年   160篇
  2004年   142篇
  2003年   148篇
  2002年   145篇
  2001年   111篇
  2000年   110篇
  1999年   145篇
  1998年   553篇
  1997年   316篇
  1996年   234篇
  1995年   153篇
  1994年   136篇
  1993年   136篇
  1992年   54篇
  1991年   56篇
  1990年   46篇
  1989年   47篇
  1988年   44篇
  1987年   47篇
  1986年   61篇
  1985年   38篇
  1984年   59篇
  1983年   48篇
  1982年   53篇
  1981年   43篇
  1980年   40篇
  1979年   20篇
  1978年   37篇
  1977年   37篇
  1976年   63篇
  1975年   10篇
  1973年   9篇
排序方式: 共有5770条查询结果,搜索用时 140 毫秒
1.
Monitoring the temperature in liquid hydrogen (LH2) storage tanks on ships is important for the safety of maritime navigation. In addition, accurate temperature measurement is also required for commercial transactions. Temperature and pressure define the density of liquid hydrogen, which is directly linked to trading interests. In this study, we developed and tested a liquid hydrogen temperature monitoring system that uses platinum resistance sensors with a nominal electrical resistance of approximately 1000 Ω at room temperature, PT-1000, for marine applications. The temperature measurements were carried out using a newly developed temperature monitoring system under different pressure conditions. The measured values are compared with a calibrated reference PT-1000 resistance thermometer. We confirm a measurement accuracy of ±50 mK in a pressure range of 0.1 MPa–0.5 MPa.  相似文献   
2.
The effect of SO2 gas was investigated on the activity of the photo-assisted selective catalytic reduction of nitrogen monoxide (NO) with ammonia (NH3) over a TiO2 photocatalyst in the presence of excess oxygen (photo-SCR). The introduction of SO2 (300 ppm) greatly decreased the activity of the photo-SCR at 373 K. The increment of the reaction temperature enhanced the resistance to SO2 gas, and at 553 K the conversion of NO was stable for at least 300 min of the reaction. X-ray diffraction, FTIR spectroscopy, thermogravimetry and differential thermal analysis, x-ray photoelectron spectroscopy (XPS), elemental analysis and N2 adsorption measurement revealed that the ammonium sulfate species were generated after the reaction. There was a strong negative correlation between the deposition amount of the ammonium sulfate species and the specific surface area. Based on the above relationship, we concluded that the deposition of the ammonium sulfate species decreased the specific surface area by plugging the pore structure of the catalyst, and the decrease of the specific surface area resulted in the deactivation of the catalyst.  相似文献   
3.
The reconstructed surface structure of the II–VI semiconductor ZnTe (110), which is a promising material in the research field of semiconductor spintronics, was studied by scanning tunneling microscopy/spectroscopy (STM/STS). First, the surface states formed by reconstruction by the charge transfer of dangling bond electrons from cationic Zn to anionic Te atoms, which are similar to those of IV and III–V semiconductors, were confirmed in real space. Secondly, oscillation in tunneling current between binary states, which is considered to reflect a conformational change in the topmost Zn–Te structure between the reconstructed and bulk-like ideal structures, was directly observed by STM. Third, using the technique of charge injection, a surface atomic structure was successfully fabricated, suggesting the possibility of atomic-scale manipulation of this widely applicable surface of ZnTe.  相似文献   
4.
Self-assembled peptide hydrogels represent the realization of peptide nanotechnology into biomedical products. There is a continuous quest to identify the simplest building blocks and optimize their critical gelation concentration (CGC). Herein, a minimalistic, de novo dipeptide, Fmoc-Lys(Fmoc)-Asp, as an hydrogelator with the lowest CGC ever reported, almost fourfold lower as compared to that of a large hexadecapeptide previously described, is reported. The dipeptide self-assembles through an unusual and unprecedented two-step process as elucidated by solid-state NMR and molecular dynamics simulation. The hydrogel is cytocompatible and supports 2D/3D cell growth. Conductive composite gels composed of Fmoc-Lys(Fmoc)-Asp and a conductive polymer exhibit excellent DNA binding. Fmoc-Lys(Fmoc)-Asp exhibits the lowest CGC and highest mechanical properties when compared to a library of dipeptide analogues, thus validating the uniqueness of the molecular design which confers useful properties for various potential applications.  相似文献   
5.
In a plant consisting of parallelized microreactors (MRs), the product quality is lowered because of a lack of flow uniformity among them when blockage occurs. It is not practical to install sensors in every MR from the viewpoint of cost when detecting the blocked MRs. In the previous study, the multiple blockage detection (MBD) method using a small number of sensors was proposed, but its performance became low when the number of sensors decreased. Here, the conventional algorithm for MBD is improved by considering the process behavior on blockage occurrence, and the effectiveness of the improved algorithm is demonstrated through a numerical case study. The effects of flow distributor types and sensor types on the MBD performance are numerically investigated.  相似文献   
6.
The arc welding has been used in various welding methods because it is inexpensive and high in strength after welding. However, it is a problem that accidents such as collapse of the bridge occur because of the welding defects. The welding of low cost and high productivity is required without the welding defects. The pulsed TIG welding is inexpensive and capable of high‐quality welding. The electromagnetic force contributing to penetration changes because the transient response of arc temperature and iron vapor generated from anode occurs. However, the analysis of pulsed TIG welding with metal vapor has been elucidated only metal vapor concentration near anode with transient phenomenon and heat flux. Thus, the theoretical elucidation of penetration depth with control factor has not been researched. In this paper, the contribution of metal vapor mass at the periphery part of pulsed arc to the electromagnetic force in the weld pool is elucidated. As a result, the iron vapor mass at periphery part decreased with increasing the frequency. The iron vapor was stagnated at axial center within one cycle. The electromagnetic force to the penetration depth direction in weld pool increased at axial center. Therefore, the metal vapor mass at periphery part plays an important role for the electromagnetic force increment at axial center.  相似文献   
7.
The chromium (Cr) evaporation behavior of several different types of iron (Fe)-based AFA alloys and benchmark Cr2O3-forming Fe-based 310 and Ni-based 625 alloys was investigated for 500 h exposures at 800 °C to 900 °C in air with 10% H2O. The Cr evaporation rates from alumina-forming austenitic (AFA) alloys were ~5 to 35 times lower than that of the Cr2O3-forming alloys depending on alloy and temperature. The Cr evaporation behavior was correlated with extensive characterization of the chemistry and microstructure of the oxide scales, which also revealed a degree of quartz tube Si contamination during the test. Long-term oxidation kinetics were also assessed at 800 to 1000 °C for up to 10,000 h in air with 10% H2O to provide further guidance for SOFC BOP component alloy selection.  相似文献   
8.
9.
Fine-tuned, molecular-composite, organosilica membranes were fabricated via the co-condensation of organosilica precursors bis(triethoxysilyl)acetylene (BTESA) and bis(triethoxysilyl)benzene (BTESB). Fourier transform infrared and UV–vis spectra confirmed the co-condensation behaviors of BTESA and BTESB. The evolution of the network structure indicated that the incorporated BTESB decreased the membrane pore size, which was determined by a modified gas translation model according to the steric effect of the phenyl groups. The incorporation of BTESB to BTESA finely tuned the membrane structure and endowed the resultant composite membrane with improved separation properties. The BTESAB 9:1 membrane (molar ratio of BTESA/BTESB was 9:1) exhibited high C3H6 permeance at 4.5 × 10−8 mol m−2 s−1 Pa−1 and a C3H6/C3H8 permeance ratio of 33 at 50°C. One of the most important developments of this study involved clearly defining the relationship between membrane pore size and C3H6/C3H8 separation performance for organosilica membranes in single and binary separation systems.  相似文献   
10.
采用辉锑矿为原料成功制备出Cu_(12)Sb_4S_(13)块体。研究以Sb_2S_3矿物为原料时烧结工艺对Cu_(12)Sb_4S_(13)合成的影响。在400 ~ 440℃温度区间内均可快速合成Cu_(12)Sb_4S_(13)块体且二次烧结能够进一步减小中间相CuSbS_2和Cu_3SbS_3。第二相Cu_3SbS_4和残留相CuS随着烧结时间的延长而降低。二次烧结前进行机械化球磨处理,干磨比湿磨更容易减小残留相。初次烧结块体的断面SEM和EDS能谱分析表明内部存在Cu或Cu_2S颗粒团聚现象。适当降低Cu或CuS摩尔量(化学计量比0.1 mol)能促进烧结块表面反应进行。烧结过程中,硫磺蒸汽压的导致烧结块表面成分和内部粉末的成分不同。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号