首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
工业技术   19篇
  2016年   1篇
  2011年   1篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2004年   2篇
  2003年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
Detonation nanodiamond dispersed on silicon surfaces underwent different H2 MPCVD exposures. The induced changes at the surface have been characterized in situ by XPS and XEELS. Then, a short CH4/H2 growth step was applied. This sequential study revealed an excellent stability of detonation nanodiamond. The sp3 etching rate is insufficient to remove nanodiamond even under intense H2 plasma. The H2 exposure could be successfully used to remove C–C sp2 carbon without altering sp3 seeds. Moreover, the formation of silicon carbide observed after the hydrogen treatment is thought to be helpful to enhance the adhesion of nanodiamond particles on the substrate.  相似文献   
2.
We examine here by electro-thermal simulation tools (SILVACO's Atlas) a configuration of Silicon-On-Insulator substrate for Fully-Depleted MOSFET architectures, incorporating diamond as buried insulator, and compare it with traditional silicon dioxide BOX for the future technological nodes of the ITRS (90 nm and below). Our aim is to give major trends to be followed in order to optimize diamond integration from electrical and thermal points of view, constraints that must be kept in mind in parallel with the technological work on thin diamond films. In this theoretical study, we perform a benchmarking between SiO2 and diamond BOX. We first point out that the BOX thickness should not be more than few hundred nanometers to maintain electrical performances. From thermal point of view, we demonstrate that the replacement of 100 nm thick buried oxide by a 100 nm thick diamond layer can lead to about 50% reduction of the temperature when only 33% decrease can be obtained with Ultra Thin SiO2 BOX (20 nm). Furthermore, thick diamond BOX avoids the parasitic capacitances issue that reduces Ultra Thin BOX devices working frequency.  相似文献   
3.
Diamond nucleation onto diamond-free substrates remains a major challenge for most diamond films applications. In order to quickly form a continuous film across a given surface, several pre-treatments of the substrate have been developed to increase the nucleation density. Amongst those, Bias Enhanced Nucleation (BEN) has been used intensively for many applications, including for instance the synthesis of ultra-thin diamond films, heteroepitaxial diamond films, or nanodiamond films. The determination of the nucleation kinetics during the BEN pretreatment is particularly relevant in order to obtain fundamental informations about plasma/surface interactions and associated nucleation mechanisms. Besides, it is a key challenge to optimise the BEN step for specific applications, such as epitaxy or high nucleation density. The sequential approach which consists of interrupting the process at different time intervals for nucleation density measurement is time consuming and not accurate enough. We propose a real time investigation of diamond nucleation by laser scattering applied to the Bias Enhanced Nucleation (BEN) pre-treatment on silicon carbide. The Microwave Plasma Chemical Vapour Deposition (MPCVD) reactor was equipped with a laser reflectometry system associated with a lock-in laser intensity measurement. In parallel, a kinetics model of nucleation was drawn based on light diffusion of diamond nanoparticles according to their size and density. The modelling results were compared to the experimental data, and characteristic kinetic parameters were worked out for diamond nucleation on silicon carbide. In this study we demonstrated that using a model based on nanoparticles laser scattering it is possible to determine in real time the kinetics of diamond nucleation.  相似文献   
4.
The exceptional chemical, mechanical and thermal properties of diamond make this material the ideal choice for resonant MEMS. Micro-cantilevers designed for biochemical applications have been fabricated using CVD diamond. In this work, the mechanical properties of these cantilevers were investigated by two different techniques: bending test using a Contact Surface Profilometer and resonant test, using a Laser Doppler Vibrometer. The Young’s Modulus of diamond thin film was estimated by these two tests. For the resonance test, the estimated values are comprised between 930 and 1300 GPa while bending test gives values between 950 and 1030 GPa. The load–displacement characteristics and the fracture point (or ultimate stress) have also been investigated.  相似文献   
5.
Diamond exhibits several attractive properties for bio-sensing applications. In particular its high bio inertness, high electrochemical stability, and optical transparency provide diamond with high interests for neural activity study. The purpose of this study is the realisation of microelectrodes arrays (MEA) in diamond for neurons slices study. Due to a cellular lysis on the edge of the tissue slices studied, electrodes have to be at least 60 μm in height even though the electrode surface has to be minimised in order to achieve good signal noise rate. Silicon MEA with metal contacts were realised using (Deep Reactive Ion Etching) DRIE and coated with Nanocrystaline Diamond (NCD) using (Bias Enhanced Nucleation) BEN technique. We focus the study on the understanding of the BEN nucleation process on such high aspect ratio electrodes. Several parameters such as slope of the substrate, conductivity and chemical nature of the substrate were studied in order to enable selective nucleation necessary to fabricate diamond MEAs. The study leads to the optimised development of a processing route enabling the selective coating of the active tips of high aspect ratio MEAs without altering the electrical insulation between probes.  相似文献   
6.
Nanodiamonds (NDs) emerge as excellent candidates for biological applications but their functionalization is still an issue. By analogy with hydrogenated diamond layers, an efficient and homogeneous covalent functionalization can be achieved on hydrogenated NDs. Here is reported an efficient new approach to hydrogenate NDs by reducing all various oxygenated groups into C–H terminations. The hydrogenation treatment is performed by exposing the nanoparticles to microwave hydrogen plasma in the gas phase. The hydrogenation of the nanoparticles has been carefully characterized by FTIR and XPS analysis revealing strong modification and homogenization of their entire surface. To validate this hydrogen treatment, functionalization of the NDs has been conducted by using diazonium reactions. An efficient grafting was observed for the hydrogenated NDs compared to the as-received ones.  相似文献   
7.
Electrochemical activity, morphology and surface electrical conductivity of Boron-Doped Polycrystalline Diamond films prepared by MPCVD have been investigated. Heterogeneous apparent rate constants of three different redox systems, [Fe(CN)6]3−/4−, [IrCl6]2−/3− and [Ru(NH3)6]3+/2+ have been measured by both Cyclic Voltammetry and Electrochemical Impedance Spectroscopy on < 100 > textured films with a predominance of (111) faces: first measurements have been done with [Fe(CN)6]3−/4− only on as grown samples, and secondly after a mild electrochemical pretreatment the three redox systems have been investigated. “As-grown” samples showed a moderate average activity which was related to the presence of a minority of electronically conducting areas among insulating zones. Electrochemical treatment in neutral conditions substantially increased the activity and heterogeneous apparent rate constants kapp for the three couples were measured in the range of 10− 2 cm s− 1 with a good stability in time. Current-sensing AFM images performed ex situ showed that the electrochemically pre-treated material presented a high superficial conductivity whereas the grown sample showed major area of low conductivity.  相似文献   
8.
Detonation nanodiamond (ND) particles were dispersed on silicon nitride (SiNx) coated sc-Si substrates by spin-coating technique. Their surface density was in the 1010–1011 cm?2 range. Thermal stability and surface modifications of ND particles were studied by combined use of X-ray Photoelectron Spectroscopy (XPS) and Field Emission Gun Scanning Electron Microscopy (FEG SEM). Different oxygen-containing functional groups could be identified by XPS and their evolution versus UHV annealing temperature (400–1085 °C) could be monitored in situ. The increase of annealing temperature led to a decrease of oxygen bound to carbon. In particular, functional groups where carbon was bound to oxygen via one σ bond (C–OH, C–O–C) started decomposing first. At 970 °C carbon–oxygen components decreased further. However, the sp2/sp3 carbon ratio did not increase, thus confirming that the graphitization of ND requires higher temperatures. XPS analyses also revealed that no interaction of ND particles with the silicon nitride substrate occurred at temperatures up to about 1000 °C. However, at 1050 °C silicon nitride coated substrates started showing patch-like damaged areas attributable to interaction of silicon nitride with the underlying substrate. Nevertheless ND particles were preserved in undamaged areas, with surface densities exceeding 1010 cm?2. These nanoparticles acted as sp3-carbon seeds in a subsequent 15 min Chemical Vapour Deposition run that allowed growing a 60–80 nm diamond film. Our previous study on Si(100) showed that detonation ND particles reacted with silicon between 800 and 900 °C and, as a consequence, no diamond film could be grown after Chemical Vapour Deposition (CVD). These findings demonstrated that the use of a thin silicon nitride buffer layer is preferable insofar as the growth of thin diamond films on silicon devices via nanoseeding is concerned.  相似文献   
9.
CVD diamond is a remarkable material for the fabrication of radiation detectors. Radiation hardness, chemical resistance and high-temperature operation capabilities of diamond motivate its use for fabrication of devices operating in hostile environments such as that encountered in nuclear industry and high energy physics. Its potentialities for such applications have been well documented and recent studies have led to the developments of a few applications that are addressing specific industrial needs.One particular interest of diamond stands in the fact that its atomic number is close to that of human tissues. This implies that the response of a diamond device to radiation is close to that received by the human body. Its thus enables the straightforward measurement of the dose for radiotherapy applications. However, this requires high reproducibility and linearity. It is widely observed that radiation exposure is modifying the initial performances of diamond detectors and priming devices is therefore required to obtain the required linearity. However, the nature of defects in the material strongly influences the type of priming required. This paper will address this problem from the study of trapping levels and their influence on the device response. We present here the current status of the development of polycrystalline diamond for this type of application, and propose new techniques of improving the material characteristics toward the optimisation of ionisation chamber performances as well as that of thermoluminescent dosimeters for the particular field of radiotherapy applications.  相似文献   
10.
Time of Flight (TOF) measurements using conventional laser TOF and α-particle TOF setups have been carried out on high quality CVD diamond samples to study the electron and drift mobility and to compare them with the mobility data for IIA diamond. The measured mobilities for all samples investigated are in the range 2000–2250 cm2/Vs for holes and 2200–2750 cm2/Vs for electrons, thus close to the theoretical prediction as well as to IIa diamond mobility values. The charge transient profile measured in the laser TOF measurements is influenced by the electric field profile in the sample, which might be changed based on the charge trapping at low electric fields applied, depending on the surface atomic termination. The temperature dependence of the drift mobility indicates that at room temperature the scattering on acoustic phonons is the main dominant scattering mechanism and the contribution of other types of carrier scattering mechanism is negligible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号