排序方式: 共有1条查询结果,搜索用时 9 毫秒
1
1.
Kite-可分组设计的相交数问题是确定所有可能的元素对$(T,s)$, 使得存在一对具有相同组型 $T$ 的Kite-可分组设计 $(X,{\cal H},{\cal B}_1)$ 和$(X,{\cal H},{\cal B}_2)$ 满足$|{\cal B}_1\cap {\cal B}_2|=s$. 本文研究组型为 $2^u$ 的Kite-可分组设计的相交数问题, 设 $J(u)=\{s:\exists$ 组型为 $2^u$ 的Kite-可分组设计相交于$s$ 个区组\}, $I(u)=\{0,1,\ldots,b_{u}-2,b_{u}\}$,其中 $b_u=u(u-1)/2$ 是组型为$2^u$ 的Kite-可分组设计的区组个数. 我们将给出对任意整数 $u\ge 4$ 都有$J(u)=I(u)$ 且 $J(3)= \{0,3\}$. 相似文献
1