排序方式: 共有19条查询结果,搜索用时 23 毫秒
1.
2.
记χ_(at)~e(C_n_i)为n_i阶的圈C_n_i的邻点可区别E-全色数.若n_i≡0(mod 2)(i=1,2,3…,t),则χ_(at)~e(C_n_1+C_n_2+…+C_n_t)=2t;若n_i≡0(mod 2)(i=1,2,3…,r,l相似文献
3.
4.
运用分析法和构造Smarandachely邻点全染色函数法研究了若干直积图的Smarandachely邻点全色数,进一步验证了图的Smarandachely邻点全染色猜想. 相似文献
5.
若干笛卡尔积图的邻点可区别E-全染色 总被引:4,自引:2,他引:2
图G(V,E)的k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射,如果u,v∈V(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.得到了Pm×Pn,Pm×Cn,Cm×Cn的邻点可区别E-全色数,其中C(u)={f(u)}∪{f(uv)uv∈E(G)}. 相似文献
6.
7.
一类多重联图的邻点可区别E-全染色 总被引:1,自引:0,他引:1
设G(V,E)是一个简单图,k是一个正整数,f是一个V(G)∪E(G)到{1,2,…,k].的映射.如果Au,v∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中C(u)={f(u))U{f(uv)|uv∈E(G)).称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别B全色数.本文给出了星、路、圈间的多重联图的邻点可区别E-全色数. 相似文献
8.
9.
10.
A subdivision vertex-edge corona G_1~S?(∪ G_3~E) is a graph that consists of S(G_1),|V(G_1)| copies of G_2 and |I(G_1)| copies of G_3 by joining the i-th vertex in V(G_1) to each vertex in the i-th copy of G_2 and i-th vertex of I(G_1) to each vertex in the i-th copy of G_3.In this paper, we determine the normalized Laplacian spectrum of G_1~S?(G_2~V∪ G_3~E) in terms of the corresponding normalized Laplacian spectra of three connected regular graphs G_1, G_2 and G_3. As applications, we construct some non-regular normalized Laplacian cospectral graphs. In addition, we also give the multiplicative degree-Kirchhoff index, the Kemeny's constant and the number of the spanning trees of G_1~S?(G_2~V∪ G_3~E) on three regular graphs. 相似文献