首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  国内免费   1篇
  完全免费   26篇
工业技术   86篇
  2019年   1篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   13篇
  2011年   19篇
  2010年   11篇
  2009年   11篇
  2008年   5篇
  2007年   1篇
排序方式: 共有86条查询结果,搜索用时 31 毫秒
1.
多无人机超视距空战决策问题是现代空战重要的研究课题,针对多无人机超视距空战博弈问题进行了研究。首先根据敌我双方作战态势参数信息,建立敌我双方对抗支付博弈模型,然后给出了基于量子粒子群算法的空战博弈混合策略纳什均衡的求解方法,最后通过仿真验证了该方法的可行性及有效性,为解决在超视距下多无人机空战策略问题提供了一种较科学的方法。  相似文献   
2.
针对基本粒子群算法在飞行器地磁匹配航迹规划中容易陷入局部收敛的问题,借鉴粒子群算法和量子进化算法,将量子粒子群算法应用在基于地磁匹配的航迹规划中。结合飞行器的性能约束和地磁匹配自身特点,设计了一种适用于地磁匹配航迹规划的评价函数作为适应度函数。仿真结果表明,量子粒子群算法具有较快的收敛速度且改善了最优解,验证了量子粒子群算法应用于地磁匹配航迹规划的有效可行性。  相似文献   
3.
迟滞系统广泛存在于各工程领域,但由于迟滞非线性系统的不确定性、状态不可测等特性,因此迟滞系统在建模方面存在一定的困难。针对上述问题,提出了一种采用最小二乘支持向量回归机的解决方案,对系统进行建模方法的研究,并利用粒子群算法、量子粒子群算法等对最小二乘支持向量机中的惩罚参数γ和核函数参数σ的组合进行优化,以提高模型性能及泛化能力。仿真结果表明,利用粒子群优化算法的最小二乘支持向量回归机对迟滞系统的模型仿真可以得到较好的结果。  相似文献   
4.
针对智能算法与历史大数据相结合进行多变量系统辨识过程中不能精确量化每个子系统数学模型的问题,提出了一种有效的数据并行优化计算的解决方案。在辨识过程中,为了解决量子粒子群算法(quantum particle swarm optimization ,QPSO)收敛速度和寻优精度方面的不足,提出了一种改进的 QPSO 算法--双量子粒子群算法(double quantum particle swarm optimization ,D-QPSO)。该算法对粒子种群编码和原有的进化搜索策略同时进行了量子化处理,经过测试函数实验,改进的算法在搜索能力上优于 PSO 和QPSO算法。最后利用现场运行历史数据,通过D-QPSO算法进行参数估计,将设计的解决方案应用于热力发电厂负荷控制系统的传递函数辨识中,得到的模型为控制器的设计与优化奠定了基础。  相似文献   
5.
针对量子粒子群优化(QPSO)算法对越界粒子处理方式的不足,提出了一种基于边界控制的改进方法,并将其应用在有限长脉冲响应(FIR)滤波器的频率采样设计法中,给出了算法的具体实施步骤。对 FIR 低通和带通滤波器的仿真结果表明,相对于查表法及标准 QPSO 算法,改进后的 QPSO 算法能够快速、有效地求得频率过渡带样本值的最优解,同时通带波动变小,最小阻带衰减变大,从而对 FIR滤波器的设计进行了进一步的优化,验证了改进算法的有效性。  相似文献   
6.
针对模糊C-均值聚类算法容易陷入局部极值等缺陷,提出了基于改进QPSO的模糊C-均值聚类,算法利用QPSO的优点,并对量子门更新策略进行了改进。实验结果显示该算法提高了模糊聚类算法的聚类效果以及搜索能力,在全局寻优能力、跳出局部最优能力、收敛速度等方面具有优势。  相似文献   
7.
在检测数据库重复记录的研究中,基于BP神经网络的检测(Duplicate Record Detection based on BP Neural Network,简称DRDBPNN)算法的性能与初始的参数设置有很大的关系,从而造成其性能不稳定的缺陷,因此本文提出了一种基于QPSO与BP神经网络的重复记录检测算法(Duplicate Record Detection based on Quantum Particle Swarm Optimization and BP Neural Network,简称DRDQPSQBPNN)。仿真表明,该算法能够有效地提升重复记录的检测效率。  相似文献   
8.
程加堂  段志梅  艾莉  熊燕 《继电器》2015,43(19):66-71
为提高水电机组振动故障诊断的准确性,提出了一种基于改进D-S证据理论融合量子粒子群优化BP神经网络(QPSO-BP)的诊断方法。根据水电机组常见的振动故障类型,采用3个惯性权值随机调整的QPSO-BP网络分别对其进行初级诊断,并作为独立证据体应用于D-S理论的合成之中,实现了基本概率赋值的客观化。针对标准D-S无法合成高度冲突证据的缺陷,通过计算权值矩阵对其进行修正。实例分析表明,和3个初级诊断模型及标准D-S合成法相比,所提方法可以有效识别机组的振动故障,具有较高的诊断准确率。  相似文献   
9.
丁颖  李飞 《计算机工程》2014,(3):232-237
针对量子粒子群优化(QPSO)算法迭代后期种群多样性下降、收敛速度慢、易陷入局部最优的缺点,提出一种自适应收缩-扩张系数的双中心协作最子粒子群优化算法。该算法从2个方面进行改进:(1)自适应调节收缩-扩张系数,其目的是帮助粒子跳出局部最优点,提高粒子的全局搜索能力;(2)双重更新全局最优位置,即在每次迭代中,先后分别采用2种不同的方式更新全局最优位置。第1种方式与QPSO算法一致,第2种方式则引入双中心粒子,使其和当前全局最优位置在相应维度上合作,从而达到更新全局最优位置的目的。从固定迭代次数和固定精度角度分析算法性能,仿真结果表明,相比于QPSO算法,该算法在保证复杂度较低的情况下,可提高收敛速度,增强全局和局部搜索能力。  相似文献   
10.
为了快速准确地诊断变压器故障,提出一种基于量子粒子群优化的快速相关向量机(quantum particle swarm optimized fast relevance vector machine,QPSO-FRVM)变压器故障诊断模型。首先建立了快速相关向量机多层次分类模型,在此基础上提出劣化度故障特征提取方法;其次分析了影响相关向量机分类性能的2个因素,借助量子粒子群算法确定每一层的核函数参数以及故障特征提取方法。最后利用训练好的 QPSO-FRVM 模型进行变压器的故障诊断,并与IEC三比值法、SVM模型进行对此。仿真结果表明,FRVM 缩短了训练时间,具有比RVM更高的诊断效率;同时在小样本情况下,对核参数和特征提取方法均进行优化选择的QPSO-FRVM模型,具有比IEC三比值法和SVM模型更高的诊断准确率,为实现变压器快速准确的故障诊断提供一种新的参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号