首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   1篇
工业技术   3篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
基于用水时间序列构建投影寻踪回归(PPR)需水预测模型.针对PPR模型矩阵参数难以确定的不足,利用一种新型群体智能仿生算法--飞蛾火焰优化(MFO)算法优化PPR模型矩阵参数,提出MFO-PPR预测模型,并构建MFO-BP模型作对比,以1980-2013年上海市需水预测为例,分别利用实例前20组和后10组数据对模型参数进行率定及预测.结果表明:MFO-PPR模型对实例后10 a需水预测的平均相对误差绝对值和最大相对误差绝对值分别为1.84%、4.20%,预测精度优于MFO-BP模型的2.06%、4.61%.MFO算法具有较好的全局寻优能力,将MFO算法应用于PPR模型参数寻优,可有效地提高PPR模型的预测精度.  相似文献   
2.
通过10个典型低维函数对一种新型群体智能仿生算法——飞蛾火焰优化(MFO)算法进行仿真验证,并与粒子群优化(PSO)算法的寻优结果进行对比.以无界井流问题及直线隔水边界附近井流问题的解析解为基础,将MFO算法应用于分析抽水试验数据,进行反演承压含水层参数,并以2个实例对MFO算法进行验证.结果表明:MFO算法在低维函数极值寻优问题上具有较好的收敛精度和全局寻优能力,寻优精度较PSO算法提高了7个数量级以上.MFO算法对2个实例的反演精度较文献改进SA算法等提高了56.5%以上,具有较好的稳健性能、收敛速度和全局寻优能力.利用MFO算法对承压含水层参数进行反演,可获得比相关文献更高的反演精度,不但为精确估计承压含水层参数提供了有效方法,而且拓展了MFO算法在地下水模型参数反演中的应用,具有良好的应用价值和前景.  相似文献   
3.
针对标准飞蛾扑火优化算法存在的易陷入局部最优陷阱、全局寻优能力不足的问题,借鉴混沌序列、模拟退火算法和遗传算法,提出Tent混沌和模拟退火改进的飞蛾扑火优化算法.首先,通过Tent混沌序列初始化种群,增加种群多样性;然后对当前最优解增加扰动产生新解,并与当前最优解按比例杂交相加,根据模拟退火算法中的Metropolis准则判断是否接受杂交后的新解,最终获得最优解.分别使用复杂高维基准函数和航迹规划问题测试算法性能.其中,6个复杂基准函数寻优测试结果表明,对于10维基准函数,该算法经过约0.25秒收敛到最优值;对于50维基准函数,该算法经过约0.5秒收敛到最优值.与标准飞蛾扑火优化算法和其它智能优化算法相比,该算法能够有效跳出局部最优解,寻优精度更高,收敛速度更快.航迹规划仿真表明,对有4个禁飞区和2个威胁源的空域环境,该算法经过大约100次迭代可以得到最优航迹,与标准飞蛾扑火优化算法相比精度更高,具有实际应用价值.因此,该算法具有更好的寻优性能.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号