首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  国内免费   6篇
  完全免费   88篇
工业技术   294篇
  2019年   1篇
  2018年   5篇
  2017年   8篇
  2016年   8篇
  2015年   8篇
  2014年   14篇
  2013年   11篇
  2012年   22篇
  2011年   29篇
  2010年   23篇
  2009年   26篇
  2008年   23篇
  2007年   18篇
  2006年   18篇
  2005年   20篇
  2004年   9篇
  2003年   9篇
  2002年   8篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
排序方式: 共有294条查询结果,搜索用时 46 毫秒
1.
一种SVM增量学习淘汰算法   总被引:1,自引:0,他引:1  
基于SVM寻优问题的KKT条件和样本之间的关系,分析了样本增加后支持向量集的变化情况,支持向量在增量学习中的活动规律,提出了一种新的支持向量机增量学习遗忘机制--计数器淘汰算法.该算法只需设定一个参数,即可对训练数据进行有效的遗忘淘汰.通过对标准数据集的实验结果表明,使用该方法进行增量学习在保证训练精度的同时,能有效地提高训练速度并降低存储空间的占用.  相似文献   
2.
This paper considers the problem of mining closed frequent itemsets over a data stream sliding window using limited memory space. We design a synopsis data structure to monitor transactions in the sliding window so that we can output the current closed frequent itemsets at any time. Due to time and memory constraints, the synopsis data structure cannot monitor all possible itemsets. However, monitoring only frequent itemsets will make it impossible to detect new itemsets when they become frequent. In this paper, we introduce a compact data structure, the closed enumeration tree (CET), to maintain a dynamically selected set of itemsets over a sliding window. The selected itemsets contain a boundary between closed frequent itemsets and the rest of the itemsets. Concept drifts in a data stream are reflected by boundary movements in the CET. In other words, a status change of any itemset (e.g., from non-frequent to frequent) must occur through the boundary. Because the boundary is relatively stable, the cost of mining closed frequent itemsets over a sliding window is dramatically reduced to that of mining transactions that can possibly cause boundary movements in the CET. Our experiments show that our algorithm performs much better than representative algorithms for the sate-of-the-art approaches. Yun Chi is currently a Ph.D. student at the Department of Computer Science, UCLA. His main areas of research include database systems, data mining, and bioinformatics. For data mining, he is interested in mining labeled trees and graphs, mining data streams, and mining data with uncertainty. Haixun Wang is currently a research staff member at IBM T. J. Watson Research Center. He received the B.S. and the M.S. degree, both in computer science, from Shanghai Jiao Tong University in 1994 and 1996. He received the Ph.D. degree in computer science from the University of California, Los Angeles in 2000. He has published more than 60 research papers in referred international journals and conference proceedings. He is a member of the ACM, the ACM SIGMOD, the ACM SIGKDD, and the IEEE Computer Society. He has served in program committees of international conferences and workshops, and has been a reviewer for some leading academic journals in the database field. Philip S. Yureceived the B.S. Degree in electrical engineering from National Taiwan University, the M.S. and Ph.D. degrees in electrical engineering from Stanford University, and the M.B.A. degree from New York University. He is with the IBM Thomas J. Watson Research Center and currently manager of the Software Tools and Techniques group. His research interests include data mining, Internet applications and technologies, database systems, multimedia systems, parallel and distributed processing, and performance modeling. Dr. Yu has published more than 430 papers in refereed journals and conferences. He holds or has applied for more than 250 US patents.Dr. Yu is a Fellow of the ACM and a Fellow of the IEEE. He is associate editors of ACM Transactions on the Internet Technology and ACM Transactions on Knowledge Discovery in Data. He is a member of the IEEE Data Engineering steering committee and is also on the steering committee of IEEE Conference on Data Mining. He was the Editor-in-Chief of IEEE Transactions on Knowledge and Data Engineering (2001–2004), an editor, advisory board member and also a guest co-editor of the special issue on mining of databases. He had also served as an associate editor of Knowledge and Information Systems. In addition to serving as program committee member on various conferences, he will be serving as the general chairman of 2006 ACM Conference on Information and Knowledge Management and the program chairman of the 2006 joint conferences of the 8th IEEE Conference on E-Commerce Technology (CEC' 06) and the 3rd IEEE Conference on Enterprise Computing, E-Commerce and E-Services (EEE' 06). He was the program chairman or co-chairs of the 11th IEEE International Conference on Data Engineering, the 6th Pacific Area Conference on Knowledge Discovery and Data Mining, the 9th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, the 2nd IEEE International Workshop on Research Issues on Data Engineering:Transaction and Query Processing, the PAKDD Workshop on Knowledge Discovery from Advanced Databases, and the 2nd IEEE International Workshop on Advanced Issues of E-Commerce and Web-based Information Systems. He served as the general chairman of the 14th IEEE International Conference on Data Engineering and the general co-chairman of the 2nd IEEE International Conference on Data Mining. He has received several IBM honors including 2 IBM Outstanding Innovation Awards, an Outstanding Technical Achievement Award, 2 Research Division Awards and the 84th plateau of Invention Achievement Awards. He received an Outstanding Contributions Award from IEEE International Conference on Data Mining in 2003 and also an IEEE Region 1 Award for “promoting and perpetuating numerous new electrical engineering concepts" in 1999. Dr. Yu is an IBM Master Inventor. Richard R. Muntz is a Professor and past chairman of the Computer Science Department, School of Engineering and Applied Science, UCLA. His current research interests are sensor rich environments, multimedia storage servers and database systems, distributed and parallel database systems, spatial and scientific database systems, data mining, and computer performance evaluation. He is the author of over one hundred and fifty research papers.Dr. Muntz received the BEE from Pratt Institute in 1963, the MEE from New York University in 1966, and the Ph.D. in Electrical Engineering from Princeton University in 1969. He is a member of the Board of Directors for SIGMETRICS and past chairman of IFIP WG7.3 on performance evaluation. He was a member of the Corporate Technology Advisory Board at NCR/Teradata, a member of the Science Advisory Board of NASA's Center of Excellence in Space Data Information Systems, and a member of the Goddard Space Flight Center Visiting Committee on Information Technology. He recently chaired a National Research Council study on “The Intersection of Geospatial Information and IT” which was published in 2003. He was an associate editor for the Journal of the ACM from 1975 to 1980 and the Editor-in-Chief of ACM Computing Surveys from 1992 to 1995. He is a Fellow of the ACM and a Fellow of the IEEE.  相似文献   
3.
Model-based learning systems such as neural networks usually “forget” learned skills due to incremental learning of new instances. This is because the modification of a parameter interferes with old memories. Therefore, to avoid forgetting, incremental learning processes in these learning systems must include relearning of old instances. The relearning process, however, is time-consuming. We present two types of incremental learning method designed to achieve quick adaptation with low resources. One approach is to use a sleep phase to provide time for learning. The other one involves a “meta-learning module” that acquires learning skills through experience. The system carries out “reactive modification” of parameters not only to memorize new instances, but also to avoid forgetting old memories using a meta-learning module.This work was presented, in part, at the 9th International Symposium on Artificial Life and Robotics, Oita, Japan, January 28–30, 2004  相似文献   
4.
A linear model tree is a decision tree with a linear functional model in each leaf. Previous model tree induction algorithms have been batch techniques that operate on the entire training set. However there are many situations when an incremental learner is advantageous. In this article a new batch model tree learner is described with two alternative splitting rules and a stopping rule. An incremental algorithm is then developed that has many similarities with the batch version but is able to process examples one at a time. An online pruning rule is also developed. The incremental training time for an example is shown to only depend on the height of the tree induced so far, and not on the number of previous examples. The algorithms are evaluated empirically on a number of standard datasets, a simple test function and three dynamic domains ranging from a simple pendulum to a complex 13 dimensional flight simulator. The new batch algorithm is compared with the most recent batch model tree algorithms and is seen to perform favourably overall. The new incremental model tree learner compares well with an alternative online function approximator. In addition it can sometimes perform almost as well as the batch model tree algorithms, highlighting the effectiveness of the incremental implementation. Editor: Johannes Fürnkranz  相似文献   
5.
Additive clustering was originally developed within cognitive psychology to enable the development of featural models of human mental representation. The representational flexibility of additive clustering, however, suggests its more general application to modeling complicated relationships between objects in non-psychological domains of interest. This paper describes, demonstrates, and evaluates a simple method for learning additive clustering models, based on the combinatorial optimization approach known as Population-Based Incremental Learning. The performance of this new method is shown to be comparable with previously developed methods over a set of benchmark data sets. In addition, the method developed here has the potential, by using a Bayesian analysis of model complexity that relies on an estimate of data precision, to determine the appropriate number of clusters to include in a model.  相似文献   
6.
Active learning algorithms allow neural networks to dynamically take part in the selection of the most informative training patterns. This paper introduces a new approach to active learning, which combines an unsupervised clustering of training data with a pattern selection approach based on sensitivity analysis. Training data is clustered into groups of similar patterns based on Euclidean distance, and the most informative pattern from each cluster is selected for training using the sensitivity analysis incremental learning algorithm in (Engelbrecht and Cloete, 1999). Experimental results show that the clustering approach improves on standard active learning as presented in (Engelbrecht and Cloete, 1999).  相似文献   
7.
In many language processing tasks, most of the sentences generally convey rather simple meanings. Moreover, these tasks have a limited semantic domain that can be properly covered with a simple lexicon and a restricted syntax. Nevertheless, casual users are by no means expected to comply with any kind of formal syntactic restrictions due to the inherent spontaneous nature of human language. In this work, the use of error-correcting-based learning techniques is proposed to cope with the complex syntactic variability which is generally exhibited by natural language. In our approach, a complex task is modeled in terms of a basic finite state model, F, and a stochastic error model, E. F should account for the basic (syntactic) structures underlying this task, which would convey the meaning. E should account for general vocabulary variations, word disappearance, superfluous words, and so on. Each natural user sentence is thus considered as a corrupted version (according to E) of some simple sentence of L(F). Adequate bootstrapping procedures are presented that incrementally improve the structure of F while estimating the probabilities for the operations of E. These techniques have been applied to a practical task of moderately high syntactic variability, and the results which show the potential of the proposed approach are presented.  相似文献   
8.
CMAC convergence properties both in batch and in incremental learning are analyzed. The previous conclusions about the CMAC convergence, which are deduced under the condition that the articulation matrix is positive definite, are improved into the new less limited and more general conclusions in which no additive conditions are needed. An improved CMAC algorithm with self-optimizing learning rate is proposed from the new conclusions. Simulation results show the correctness of the new conclusions and the advantages of the improved algorithm.  相似文献   
9.
Neural networks are generally exposed to a dynamic environment where the training patterns or the input attributes (features) will likely be introduced into the current domain incrementally. This Letter considers the situation where a new set of input attributes must be considered and added into the existing neural network. The conventional method is to discard the existing network and redesign one from scratch. This approach wastes the old knowledge and the previous effort. In order to reduce computational time, improve generalization accuracy, and enhance intelligence of the learned models, we present ILIA algorithms (namely ILIA1, ILIA2, ILIA3, ILIA4 and ILIA5) capable of Incremental Learning in terms of Input Attributes. Using the ILIA algorithms, when new input attributes are introduced into the original problem, the existing neural network can be retained and a new sub-network is constructed and trained incrementally. The new sub-network and the old one are merged later to form a new network for the changed problem. In addition, ILIA algorithms have the ability to decide whether the new incoming input attributes are relevant to the output and consistent with the existing input attributes or not and suggest to accept or reject them. Experimental results show that the ILIA algorithms are efficient and effective both for the classification and regression problems.  相似文献   
10.
为有效发现道路交通拥堵状态,提出基于增量式贝叶斯分类器的交通拥堵判别方法.该方法把交通拥堵是否发生看成是特殊的分类问题,选取增量式贝叶斯分类器,根据以往是否发生交通拥堵的检测数据,即分别把在发生交通拥堵和不发生交通拥堵两种情况下的交通参数作为特征参数对其进行训练,然后用得到的分类器对检测到的交通参数进行分类,判别是否发生交通拥堵.微观交通仿真数据表明该方法的可行性和有效性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号